I 00,000-count Graphical Multimeters MTX 328 I MTX 3282 MTX 3283

Contents

General Instructions 3
Introduction 3
Symbols used on the instrument 3
Precautions and safety measures 3
Safety features. 4
Maintenance, metrological verification
Warranty 4
Cleaning 4
Measurement input protection systems
Special functions 5
Description of the instrument 6
Front, keyboards (illustration) 6
Rear (illustration, markings)
Measurement terminal block (illustration, markings)
Front (description) 7
Inputs 9
Display 9
Functional description 10
Preparation for use 10
Initial settings 14
Specific configurations of the instrument 15
Initialisation of the values. 16
Access to main functions 17
Range management 18
Display HOLD management HOLD, REL, SURV, SPEC, MEM18
Access to secondary functions 25
MATH Function 27
Favourite function 29
SX-DMM Software kit (option) 31
Bluetooth (on -BT version) 31
Technical specifications 33
Voltage measurement33
Current measurement 35
Frequency measurement 36
Resistance measurement 37
Continuity mode 37
Test diode 37
Capacitance measurement 38
Temperature measurement with Pt100 or Pt1000 sensor (MTX 3282, MTX 3283). 38
Temperature measurement with J or K thermocouple 38
dBm measurement 38
Positive or negative peak measurement 39
Resistive power 39
Duty ratio DC+, DC- 39
Pulse counting CNT+, CNT- 39
Clock 40
Influences. 40
Multimeter traceability, calibration 40
General specifications 41
Environmental conditions 41
Power 41
Display 41
Safety 42
CEM 42
RS232 DB9F and USB optical cables (options)42
Mechanical characteristics 42
Box 42
Packaging 42
Supply, accessories 43
Index 44

General instructions

Symbols used on the instrument

Precautions and safety measures

Definition of measurement categories
before use
during use

You have just acquired a 100,000-count graphical multimeter.
Thank you for your trust in our products.
It complies with safety standard EN 61010-1, double insulation, relative to electronic measuring instruments.
For optimum service, read this manual carefully and comply with the operating precautions.

\triangleWarning: Risk of danger.
Refer to the operating manual to find out the nature of the potential hazards and the action necessary to avoid such hazards.
Earth terminal
Equipment protected throughout by double insulation.
The rubbish bin with a line through it means that in the European Union, the product must undergo selective disposal for the recycling of electric and electronic material, in compliance with Directive WEEE 2002/96/EC.

Attention : Risk of electrical shock

- Read carefully all the notes preceded by the symbol $\widehat{\Lambda}$.
- If you use this instrument in a way which is not specified, the protection which it provides may be compromised, putting you in danger.
- The safety of any system incorporating this instrument is the responsibility of the system assembler.
- This instrument has been designed for use indoors:
- in an environment with pollution level 2 ,
- at an altitude of less than 2000 m ,
- at a temperature between $0^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$
- with relative humidity of less than 80% up to $31^{\circ} \mathrm{C}$.
- Measurement category III for voltages no higher than 1000 V (AC or DC) in relation to the earth.
- Measurement category IV for voltages no higher than 600 V (AC or DC) in relation to the earth.

CAT III: Measurement category III corresponds to measurements on building installations.
Example: measurements on distribution panels, cabling, etc.
CAT IV : Measurement category IV corresponds to measurements taken at the source of low-voltage installations
Example: metering and measurements on overvoltage protection devices...

- Comply with environmental and storage conditions.
- For your safety, only use the leads delivered with the instrument: they comply with the norm EN 61010-031.
- The mounted probes must have an assigned measurement category III or IV and a rated voltage rated at least equal to the voltage of the circuit to be measured.
- Before using it, systematically check that it is in perfect condition.
- Never exceed the protection limit values indicated in the specifications for each type of measurement.
- Before changing the function, disconnect the measurement leads from the circuit measured.
- Never measure resistances on a live circuit.
- When the instrument is connected to the measurement circuits, never touch an unused terminal.

General instructions (contd)

Safety features

Maintenance and metrological verification

Unpacking repacking

- It is impossible to access the battery or fuse compartment without first disconnecting the measurement leads.
- When measuring voltages greater than 60 VDC or 30 VAC, the
 symbol flashes on the display.
- Automatic detection of a connection on the "Ampere" terminal.
- When there is a persistent range overrun, an intermittent buzzer indicates the risk of electric shock.

Any access to the internal circuits for adjustment, servicing or repair of the unit under power must be undertaken only by qualified personnel, after reading the instructions in this manual.

A qualified person is a person who is familiar with the installation, its construction, its use and the hazards that exist. They are authorized to activate and deactivate the installation and equipment, in compliance with the safety instructions.

For all repairs under or outside of the warranty, return the device to your retailer.
This equipment is guaranteed for 3 years against any defect in materials or workmanship, in accordance with the general terms and conditions of sale, .

During this period, the equipment can only be repaired by the manufacturer. The manufacturer reserves the right to carry out repair or replacement of all or part of the equipment.
If the equipment is returned to the manufacturer, initial transport costs shall be borne by the customer.

The warranty does not apply in the event of:

- unsuitable use of the equipment or use with other incompatible equipment
- modification of the equipment without explicit authorization from the manufacturer's technical services
- repair carried out by a person not certified by the manufacturer
- adaptation to a specific application, not provided for in the definition of the equipment or by the operating manual
- an impact, a fall or flooding.

All the equipment was verified mechanically and electrically before shipping.
When you receive it, carry out a quick check to detect any damage that may have occurred during transport. If necessary, contact our sales department immediately and register any legal reservations with the carrier.

In the event of reshipping, it is preferable to use the original package. Indicate the reasons for the return as clearly as possible in a note attached to the equipment.

- Turn the instrument off.
- Clean it with a damp cloth and soap.
- Never use abrasive products or solvents.
- Allow to dry before any further use.

General instructions (cont'd)

Measurement input protection systems

Special functions
Automatic current measurement detection

Auto power-off

Alert signal

Danger threshold

These multimeters are equipped with several protection systems:

- Varistor protection clips any transient overvoltages on the measurement terminals.
- PTC (positive temperature coefficient) protection protects against permanent overvoltages less than or equal to 1000 V during capacitance or resistance measurements and diode tests.
This protection is reset automatically after the overload.
- A fuse (11 A) provides protection during intensity measurements.

The number of input terminals is limited to $3: \mathbf{V}, \mathbf{C O M}, \mathbf{A}$. Connection of the lead to the "Ampere" terminal automatically selects the corresponding function.
@) When a function modification by the control keyboard is incompatible with the lead connection, it triggers a buzzer and a visual alarm (LEADS).

The current measurement is performed using autorange over the whole range.

If the function is validated in the Sleep menu: the instrument shuts down automatically after 30 minutes if no action has occurred on the front panel during that time.

The instrument can be powered up again by pressing the key.
(6) Automatic power-off is inhibited in:

- Surveillance mode (SURV)
- Memorize mode (MEM)
- Communication mode (optical link - RS232C, USB, Bluetooth)
- when the value measured (Voltage or Current) on the multimeter's inputs exceeds the danger level.

An intermittent buzzer sounds:

- on the "Voltage" position, when the range is exceeded (MANUal and AUTO mode - last range)
- on the "Current" position, when the range is exceeded (MANUal) mode, when 10 Amperes or more is measured
- if the position of the leads and the function selected are incompatible
- when the danger thresholds are exceeded (function activated)

When the range is exceeded, the buzzer is accompanied by display of "O. L".
When this symbol is activated:

- the voltage on the "Volt" input exceeds $\mathbf{6 0}$ VDC or $\mathbf{3 0}$ VAC
- the current injected between the "Ampere" and COM exceeds 10 A
- the range is exceeded (voltage or current) in MANual mode

Description of the instrument

Description of the instrument (cont'd)

Front (description)

1 power on/off key

- Starting the multimeter.

- Stopping the multimeter.
e. If there is a multimeter malfunction, a long press (>1s) on this key can be used to return to normal operation.

8 keys for selecting the main functions

Voltage measurement or access to the measurement type: $A C, D C$ or $A C+D C$

- Selection using this key or the \square keys.
- Validation using the key or after 2 s .

Current measurement or access to the measurement type: AC, DC or AC+DC

- Selection using this key or the \square keys.
- Validation using the key or after 2 s .

Hz Measurement of Frequency (Hz) on a VAC voltage or access to the manual frequency range $<900 \mathrm{kHz}$ (default) or $>900 \mathrm{kHz}$.
A long press opens the menu for changing the voltage range.

- Selection using the \square keys.
- Validation using the \circlearrowleft or keys.

Voltage range quick change using the keys.
The selected range is recalled in the help line (i), see page 9 .
Measurement of Resistance (Ohm)
By pressing again:

- Access to the Continuity test (δ)
- Access to Diode test (\rightarrow +)

Measurement of Temperature or access to the types of temperature measurements: ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ or K.

- Selection using the Δ keys.
- Validation using the key or after 2 s .
- By pressing this key during measurement type selection, you can access the sensor type:
- platinum probes: Pt 100, Pt 1000 only on MTX 3282 and MTX 3283
- thermocouples: J (TC J), K (TC K)
- Selection using the \square keys.
- Validation using the key or after 2 s .

The selected scale is recalled in the help line (i), see page 9 .

Measurement of Capacitance

"Favourite" measurement configurable by the user.
A long press opens the "favourite" function configuration menu.
e For the menu's configuration, see s. © Function.

This key can also be used to exit from a menu or submenu after validating it.

3 keys for navigation and

 modification of the menus

- Selection of a menu or function (up/down navigation).
- Increase or decrease of the variable selected.

- Selection of a function (left/right navigation).
- Modification of a function.
- Movement within sub-menus.

6 keys for activating the instrument's various modes

Range Selection of the operating mode:
AUTO, AUTO PEAK (MTX 3282, MTX 3283), MANU.

- Selection using this key or the \square keys.
- Validation using the key or after 2 s .

If the measurement is single range, the range defined is forced and there is no effect if this key is pressed.
Example: Diode test, continuity test and temperature measurement.
By pressing one of the $\square \square_{\text {keys, you can switch directly to MANUal mode and }}$ then modify the range.

Rel Activation, deactivation of the REL (relative) mode.
When it is active, a long press opens a window for setting the reference.
Spec Activation, deactivation of the display of the specifications for the function and range selected.

Hold Activation of HOLD or AUTO HOLD mode, deactivation NO HOLD.

- Selection using this key or the $\square \square_{\text {keys. }}$
- Validation using the key or after 2 s .

Surv Activation, deactivation of the SURV (surveillance) mode.
A long press opens a window for viewing the most recent records.
Closed by a short press.
Mem Activation, deactivation of the MEM (automatic recording) mode.
A long press opens the MEM Function menu.

2 utility keys

\square Back-lighting of the display in dark environments.
A long press opens the menu for adjusting the contrast on the LCD.

- Selection by successive presses on this key.
- A long press can be used to exit from this mode.

Description of the instrument (cont'd)

Inputs

```
v \Omega-H}+
```


Display

(foot of the screen) i

Graphical display
e. The graphical window and the bargraph constantly track the evolution of the measurement in the range selected.

Input for voltage and frequency measurements, diode tests, resistance measurements, continuity tests, and capacitance or temperature measurements.
Input for current measurements.
Reference input.

- The multimeters in this range are equipped with a graphical LCD screen ($58 \mathrm{~mm} \times 58 \mathrm{~mm}$) with 160×160 resolution for comfortable reading.
- Reading of the LCD can be optimized by varying the orientation of the display, the adjustment of contrast and, if necessary, using the backlighting.
- The modes, the functions selected, the electrical or physical values measured and the alert symbols are clearly shown on the display.
- The user can call up help (i) regarding the function selected.
- The main display is accompanied by its sign and the unit.

Depending on the current selections, the display may be graphical or digital:
The graphical window can be used to monitor the evolution of the principal measurement.
© Example

The secondary displays are intended for the SPEC, REL, MEM, SURV and 888888 functions:

Functional description

Preparation for use

Instructions before activation

Instrument power supply

To use this instrument, you must comply with the usual safety rules in order:

- to protect you against the dangers of the electric current,
- to protect the multimeter against incorrect operations.

For your safety, only use the leads delivered with the instrument. Before using it, systematically check that it is in perfect condition.

- The 3 multimeters in this range operate with three 1.5 V alkaline batteries (LR6-AM3 AA) or three 1.2 V Ni-MH rechargeable batteries (accumulators) of the same type:
$\stackrel{4}{4}$ The MTX 3281 is delivered with three 1.5 V alkaline batteries (LR6-AM3 AA). It can operate with accumulators, but does not allow in situ recharging (see §. Accessories delivered as options).
${ }^{\Perp}$ The MTX 3282 and MTX 3283 multimeters are delivered with three 1.2 V Ni-MH accumulators and charger (12 VDC 7.2 VA) for mains operation whilst simultaneously charging the batteries.
- When the charger is connected directly to the instrument, the accumulators can be recharged without removing them from the multimeter.
- The multimeter can only operate if the accu./batteries are in place.

Charge indicator A charge status indicator for the batteries or accumulators is constantly shown on the display:

The symbol flashes on the display and a buzzer sounds if the power voltage is insufficient (only 30 min charge life).
As the specifications will no longer be guaranteed, you must then replace the batteries or recharge the accumulators (see next page).

There can be differences between the display of the charge level (symbol) and the real charge level of the accumulators, according to the quality and the performances of those.
To avoid this risk, we recommend to use same accumulators (HX0051) as those delivered by the manufacturer (see p. 43).

When getting started, the apparatus needs a few seconds to display a correct level of charge (symbol).

Functional description (cont'd)

Selection of energy type

For correct management of the battery or accumulator charge status indicator, the type of power must be selected:

- Opening of the Configuration menu with the m key.
- Selection of the "General" function using the $I \Delta_{\text {keys. }}$
- Validation of General settings using the key.

- Selection of Energy Type menu using the $\square \Delta_{\text {keys. }}$

General	
IR baud	9600
Config	user
Energy	bat.
Accumulator	
Energy type	

- Modification of the Energy Type (battery or acc.) using the key.
- Validation and exit from the successive menus using the m key.

Recharging the accumulators

Before carrying out this operation, check that the accumulators are fitted in the instrument ; they do not need to be removed from the multimeter to be recharged.
Recharging is only possible if "Accumulator" has been selected in the Energy Type menu (see above).

If you try to recharge the accumulators when the batteries are fitted in the multimeter, it could damage it.

For safety reasons, the accumulators should only be loaded at between 0 and $40^{\circ} \mathrm{C}$.

Caution High internal temperature due to a current measurement may trigger the thermal security mechanism.

Functional description (cont'd)

Recharging the accumulators (cont'd)

- Before carrying out this operation, select the capacity of the accumulators (2400 mAh by default) fitted in the instrument:
- Selection: Accumulator in the using the $\square \Delta_{\text {keys. }}$
- Validation: Accumulator using the key, opens a menu for setting the accumulator capacity (in mAh):

Acc. capacity

02400 mAh

- Selection of the digit to be modified using the key.
- Modification of the value using the $\square \Delta_{\text {key }}$
- Validation of the accumulator capacity and exit from the successive menus using the key \qquad

To maintain the accumulators in good condition, run the accumulators down to the minimum charge level $\square \square$ before recharging.

- Then connect the power pack (12 VDC, 7.2 VAC) to the jack connector (see front panel illustration).
- Connect the power pack ($12 \mathrm{VDC}, 7.2 \mathrm{VAC}$) to the mains supply.

पח® The symbol opposite on the display allows you to monitor the charge status.
The accumulators are fully charged when the symbol is full $\boldsymbol{\square} \boldsymbol{\square}$.
The MTX 3282 and MTX 3283 multimeters contain Ni-MH accumulators. These accumulators must be disposed of by a recycling firm or a company specialized in the treatment of dangerous waste materials.

Never dispose of these accumulators with other solid waste. For further information, contact your MANUMESURE dealer.

(4) When the multimeter is delivered, the accumulators may be discharged, requiring a complete recharge.

Functional description (cont'd)

Wall plug
power unit power unit

Use only the charger that is delivered with this device, which is a $2 n d$ generation multimeter. The charger from the previous generation is not compatible.

Recharging totally discharged accumulators or new batteries
"A measurement" protection fuse

Checking of current

 measurement fuseReplacement of the fuse or the batteries

1. Fit the batteries into the multimeter, then connect the charger.
2. Wait approximately 30 minutes, then press the $O N$ button to switch on the multimeter and follow the progress of the charge.
Average charging period : 7h30 (with 2400 mAh accumulators)
(9) After one effective hour of recharging, the multimeter can be used for measurements, by pressing again on the ON button.

A fuse provides protection up to 11 A for current measurements. It must be replaced only with an identical fuse:
11 A, $20 \mathrm{kA}, 1000 \mathrm{~V}, 10 \times 38 \mathrm{~mm}$ (High Interrupting Capacity).
Test the current measurement as follows:

1. Select the Ampere function using the A key.
2. Connect a lead to the A terminal.
3. Check that the LEADS indication disappears from the display (presence of lead). If this is not the case, replace the fuse.

Before replacing the fuse or batteries, comply with the safety instructions given at the beginning of this manual. Then:

1. Disconnect the test leads from the measurement circuits and the instrument.
2. Disconnect the power lead from the MTX 3282 or MTX 328312 VDC power pack.
3. Switch off the power to the instrument.
4. Undo the screw on the back of the instrument.
5. Pivot the rear cover of the casing to access the battery/fuse compartment.
6. Remove the fuse or batteries and replace them with identical models.
7. Replace the cover and retighten the screw.
(6) Without batteries, the date and time are kept for ca. 1 min in the instrument.
The measurements recorded are kept for an unlimited time.

Functional description (contd)

Initial settings

Choice of language
Setting the date and time

Activation of the buzzer (Beep)

The general menu configures the parameters of the multimeter according to the conditions of use and the user's preferences.

- Opening of the Configuration menu with the m key.
- Selection of the General menu using the $\triangle \Delta_{\text {keys and then the }}$ key.

General	
Language	En
Date/Time	$\stackrel{\rightharpoonup}{l}$
Beep	on
Sleep	off
Set language	
Choix langue	

General	
Contrast	\Rightarrow
Back-light 10 s Comm. IR baud IR Back-light auto-off delay	

Selection of the language for the multimeter's menus. Two options are available: French (Fr) or English (En, default).

Date and time
 08: 03:2005
 10: 03: 45

Validation (default), or not , of audio signal (beep) when:

- a key is pressed,
- there is a voltage of more than 60 VDC or 30 VAC on the " V " input,
- a stable measurement is acquired in AUTO HOLD mode,
- the power supply voltage (battery) is insufficient.
(4) The audio signal is maintained even when the buzzer is deactivated:
* during continuity testing,
* when the range is exceeded (voltage or current),
* on a 10 A measurement,
* if the position of the leads and the function selected are incompatible.

Automatic shutdown (sleep)

Display contrast

Validation (default), or not, of automatic shutdown (sleep) after 30 min if there has been no action on the multimeter's front panel during that time.
In SURV, MEM and Communication modes, automatic shutdown is not validated.
For your safety, automatic shutdown is inhibited when the values measured (voltage, current) on the inputs exceed the danger thresholds (indicator opposite displayed).

Functional description (cont'd)

Adjustment of back-lighting

Start-up configuration (Config)

Specific configurations of the instrument

Selection of the back-lighting deactivation time to limit the multimeter's energy consumption.
6 times are possible: $\mathbf{1 0} \mathbf{s , 3 0} \mathbf{~ s , 1} \mathbf{~ m i n , ~} \mathbf{2} \mathbf{~ m i n}, 10 \mathrm{~min}$ or infinite (no deactivation).
(9) By default, the back-lighting deactivation time is 2 min.

- In user mode, the instrument restarts with the user's personal configuration and the main function selected when it was switched off.
- In basic mode, by default, the multimeter restarts with its elementary configuration and the Volt (AC+DC) function.
(6) Restart configuration indicated without leads connected. If the leads are connected, they will be taken into account for function selection.

Using the Measure menu, you can adapt the instrument's configuration to the measurement environment:

Measure	
Filter	yes
Impedance	$1 G$
dBm REF	$母$
W REF	\rightarrow
Filter activation	

- Opening of the Configuration menu with the m key.
- Selection of the Measure menu using the $\square \Delta_{\text {keys and then the }}$ key.

Filter

Impedance
dBm REF
MTX 3283

Activation of a filter to improve frequency rejection for measurements in low VDC mode.
(G) By default, filter active.

Choice of the required input impedance on the 100 and $1000 \mathrm{mV}(1 \mathrm{~V})$ ranges.

- 100 mVDC and AC+DC range: 2 possible impedances: $1 \mathrm{G} \Omega$ or $10 \mathrm{M} \Omega$
- 1000 mV mVDC range: $\quad 2$ possible impedances: $1 \mathrm{G} \Omega$ or $20 \mathrm{M} \Omega$
(b) By default, 100 mV range $=10 \mathrm{M} \Omega, 1000 \mathrm{mV}$ range $=20 \mathrm{M} \Omega$

Adjustment of the reference resistance value (dBm REF) between 1Ω and $10,000 \Omega$, for measurements in dBm on VAC or VAC+VDC voltages:

Set dBm ref

00600 ohm

- Selection of the digit to be modified using the key.
- Modification of the value using the $\square \triangle$ keys.
- Validation of the reference resistance in dBm and exit from the menu using the m key.
(4) Default value 600Ω

Reminder
A 0 dBm measurement with a 600Ω reference resistance is given on a voltage of 0.7746 VAC.

Functional description (cont'd)

Functional description (cont'd)

Access to main functions

Connection of leads	The input terminals are limited to 3 : $\mathbf{C O M}, \mathbf{V}, \Omega, \rightarrow+$ and \mathbf{A}.
	Connect the black lead to the COM socket (for all measurements).

Functions authorized when connected on the $V \Omega \rightarrow$ terminal It

Voltage measurement (Volt).
PEAK is displayed when a peak ($\mathrm{Pk}+\mathrm{Pk}$-measurement) of voltage is detected and when it is higher than the range of active voltage.

Hz Measurement of Frequency (Hz) on a VAC voltage.
Ω A 1st press gives access to Resistance measurements (Ohm).
A 2nd press gives access to Continuity measurements (δ).
A 3rd press gives access to Diode measurements (\rightarrow).
A 1st press gives access to Temperature measurements (according to the last configuration of the function).
A 2nd press gives access to the type of temperature measurement: ${ }^{\circ} \mathbf{C},{ }^{\circ} \mathbf{F}, \boldsymbol{K}$. Selection using the $\square \square_{\text {keys, validation using the }}$ key or after 2 s .

Another press on this key while selecting the measurement type gives access to the type of sensors:

- platinum probes: Pt100 or Pt1000 only on MTX 3282, MTX 3283
- thermocouples: J or K (TC J, TC K)

Selection using the $\square \square_{\text {keys, validation using the }}$ key or after 2 s .
-1- Measurement of Capacitance.

"Favourite" measurement configurable by the user.
eb For the menu's configuration, see s. © Function.

Functions authorized when connected to the A terminal

Instrument Configuration menu.
When the red lead is connected to the \mathbf{A} terminal, it automatically selects Current (AC + DC) measurement.
If current measurement is selected without connection of a lead to terminal A or without a protection fuse, the LEADS symbol flashes on the display.

Current measurement (Ampere)
e The current measurement may be performed using autorange (AUTO PEAK) over the whole scope of the ranges ($\mu \mathrm{A}, \mathrm{mA}, \mathrm{A}$).
PEAK is displayed when a peak ($\mathrm{Pk}+\mathrm{Pk}$ - measurement) of current is detected and when it is higher than the range of active current.
"Favourite" measurement configurable by the user.
e For the menu's configuration, see s. © Function.
Instrument Configuration menu.

Functional description (cont'd)

Range management	The key gives access to three operating modes: - AUTO mode - AUTO PEAK mode MTX 3282, MTX 3283 - MANU mode - Selection using this key or the \square keys. - Validation using the key or after 2 s. If the measurement is single range, the range defined is forced and there is no effect if the \square Range key is pressed. Example: Diode test, continuity test and temperature measurement.
"AUTO" mode	On the input for a measurement, AUTO mode is active by default and range selection is managed automatically by the multimeter.
$\begin{array}{r}\text { "AUTO PEAK" mode } \\ \hline \text { MTX } 3282 \\ \hline \text { MTX } 3283 \\ \hline\end{array}$	In AUTO PEAK mode, the range changes are performed on the basis of rapid acquisition of peaks, either upward or downward. (6) AUTO PEAK mode is only accessible for AC, AC+DC in V and A measurements. It prevents untimely overruns of the peak factor specified for the instrument.
"MANUal" mode	When this mode is selected and is valid for the function concerned, the keys can be used to modify the measurement range. Measurements concerned: voltage, current, resistance, capacitance. © By pressing one of the \square keys, you can switch directly to MANUal mode and then modify the range.
Display hold management	The Hold \square key gives access to two operating modes: - HOLD mode - AUTO HOLD mode - NO HOLD deactivates the mode. - Selection using this key or the $\square \Delta$ keys. - Validation using the key or after 2 s. HOLD mode freezes on the screen the current main measurement at the time when the key is pressed. The instrument continues to manage the measurements and display them in the graphical window or on the secondary display (REL mode). (3) The range selection remains unchanged: AUTO or MANUal depending on the configuration when you enter this mode.
AUTO HOLD	AUTO HOLD mode automatically freezes on the screen the current main measurement whenever a stable measurement is detected. It is confirmed by a beep (unless the configuration "Beep no" has been selected in the Configuration menu). The values memorized remain displayed until the next stable measurement taken (measurement different from ± 100 digits) or until deactivation of AUTO HOLD mode.
	The instrument continues to manage the measurements and display them in the graphical window or on the secondary display (REL mode). (9) The range selection remains unchanged (AUTO or MANUal) depending on the configuration when you enter this mode. AUTO HOLD mode is only accessible for V and A measurements.

REL
REL mode takes the current main measurement as its reference. It is indicated on the secondary display: REF.

- The main display continues to indicate the instantaneous value measured and the bargraph.
- The secondary display Δ indicates the absolute deviation between the instantaneous value measured and the reference recorded.
- The secondary display $\Delta \%$ indicates the relative deviation in \% between the instantaneous value measured and the reference recorded.
© Range management may be "AUTOmatic" or "MANUal, depending on the configuration when entering this mode.
e The Δ and $\Delta \%$ displays are managed in the same range.
In "AUTO" mode, they cannot fall below the reference range when the REL mode was activated.
2xample: Measurement of a 1.5 VDC voltage with a reference set to 1 V :

Adjustment of the reference

When the mode is active, a long press on the Rel key opens a window for setting the REF reference.

- The key selects the digit to be modified.
- The \square keys modify the digit selected.
- The m key can be used to exit from the menu after validating the new reference.

Example:

Functional description (cont'd)

SURV

- The SURV mode monitors the variations of a signal by recording the extreme values (MIN and MAX) of the main measurement and calculating the average (AVG). For each value memorized the multimeter records the corresponding date and time.
e. When it is started up, the MTX 3281 reinitializes the date and time (01:01:2000, 00:00:00).
Before starting work, set the correct date and time to "date-stamp" the records see \S. Setting the date and time).
- When you enter SURV mode by a short press on the key, the last MIN and MAX measurements are erased and then initialized with the current measurement.
e. SURV flashes when the mode is active.
- AVG shows the average of all the measurements recorded since SURV mode was activated.
- The data recorded can be viewed by a long press on the \square key during surveillance or after exiting from the mode.
- In SURV mode:
- MANU or AUTO range management cannot be selected.
- the current measurement, the MIN value and the MAX value are presented in the most suitable range for each of them.
Example:
AUT

SURV

Start :
27/03/2005 10 :07:11
Stop :
27/03/2005 $\quad 10: 10: 30$
Mini : -1.0000 V 27/03/2005 $\quad 10: 08: 25$

Max: 2.5000 V 27/03/2005 $\quad 10: 09: 25$
Avg: 1.3000 V

- Consultation of recorded data by a long press on the key
The data recorded is accompanied by the date, time and surveillance range.
- Exit from consultation by a short press on the Surv

Functional description (cont'd)

SPEC

MEM

On the basis of the technical specifications, the SPEC mode directly displays the tolerance of the measurement in progress, so that there is no need to search for it and calculate it.
On the basis of the main measurement, the display:

- indicates the specifications ($\mathrm{x} \%$ of reading $\pm \mathrm{n}$ digit) according to the type of measurement, the range selected and the frequency (in $A C$ and $A C+D C$)
- calculates the interval containing the true value, if the instrument is within its tolerance: \quad SMIN value \rightarrow minimum specification

SMAX value \rightarrow maximum specification
Example:

In $A C+D C$, the specifications are calculated only if the frequency can be measured (see §. secondary Functions) and is $>45 \mathrm{~Hz}$.

- MEM mode records the contents of the digital display(s) in the memory of the instrument at a pre-programmed rate.
- A short press on Men starts a series of recordings.
- The MEM symbol flashes throughout the recording period; it is accompanied by the number of recordings made.
- Memorization of the measurements can be stopped by another short press.
- The number of values to be memorized for a measurement run is programmable: it therefore stops recording automatically.
e. Another press on Mem starts a new series of recordings.

MTX 3281
MTX 3282, MTX 3283

Example: activation
of MEM mode during surveillance mode

Recording capacity	158 measurements per sequence	1 to 10 sequences
	6500 measurements maximum	1 to 10 sequences (depending on available memory)

AUT	
-00 0	
MIN	
max 2-5000 V	
AVG	

- Furthermore, the MEM mode may be activated during the SURV mode or during display of the secondary functions. The parameters set are saved. It will then be possible to select them and display them as the main function.
b
(When it is started up, the MTX 3281 reinitializes the date and time (01:01:2000, 00:00:00).
Before starting work, set the correct date and time to "date-stamp" the records. See §. Setting the date and time).

Functional description (cont'd)

Configuration of MEM mode

The MEM mode is configured in the Func. MEM function of the Configuration Menu.

- Opening of the Configuration menu with the m key.
- Selection of the "Func. MEM" function using the \square keys.

Function MEM settings

- Validation of Func. MEM using the
key.
\& A long press on Mem opens the MEM Function menu.
Programming the recording frequency
- Selection of the "RATE" function using the \square keys.

MEM Function	
Consult	$\boldsymbol{\square}$
Erase	$\boldsymbol{\square}$
Erase all	erase
Rate	\square
Recording rate	

- Validation of Rate with the key opens a menu for setting the required recording rate in hours, minutes and seconds:

Rate h:mn:s
 $$
00: 00: 02
$$

- Selection of the variables, hour, minute, second, using the key.
- Modification of the value using the $\square \Delta_{\text {keys. }}$
- Validation of the measurement recording rate and exit from the successive menus using the key
(4) The minimum recording rate is $23 \mathrm{~h}, 59 \mathrm{~min}, 59 \mathrm{~s}$. Default recording rate 1s.

Functional description (cont'd)

Programming of the number of records

By defining a number of records for a measurement campaign, it is possible to stop recording automatically.

- Selection of the number of records (No. rec.) in the MEM Function menu using the keys 11

- Validation of No. rec. using the key.

Number of rec.

0100

- Selection of the digit to be modified using the key
- Modification of the value using the \square keys.
- Validation of the number of records and exit from the successive menus using the m key.

Reading the recorded data

Reminder

The recording capacity is limited to 6,500 measurements (158 for MTX 3281)
(e) Number of records by default : 1,000.

Recordings	
$28 / 03 / 05$	$10: 40: 40$
$28 / 03 / 05$	$10: 41: 08$
$29 / 03 / 05$	$11: 05: 20$
$30 / 03 / 05$	$15: 30: 42$
5 val. (2 s), V	

-Select the Consult menu in the MEM Function to view the list or successive records.

Each recording is identified by its start date and time.

- Selection of a recording using the
$\square \Delta_{\text {keys. }}$
- Validation the selection using the key.

When selected, a recording is accompanied by :

- the number of values recorded,
- the recording rate,
- the function in which they were recorded,
- the secondary functions present during recording, if relevant.

The number of recording sequences is limited to 10.

Functional description (cont'd)

Viewing the data in a recording

The curve displayed is adapted to the graphical window according to its min. and max. values and the number of recordings.

- Selection of the function (principal or secondary) to be displayed or of the selection icon using the $\square \square_{\text {keys, modification using the }} \square_{\text {key. }}$
V . Selection of the function to be displayed
Example: Main function: V
secondary function: MIN, MAX, AVG for SURV mode

| MTX 3281 | I 4 | moves the cursor |
| :--- | :---: | :--- | :--- |
| MTX 3282, MTX 3283 | Q 4 | moves the zoomed part (icon present, if a zoom is active) |
| | Q 4 | activates/deactivates a zoom (icon present, if a zoom is possible) |

- Exit from viewing a recording by using the Mem key.

Complete erasure of memory

All recordings in the memory of the device may be erased in a single operation.

- Selection of Erase all menu in the MEM Function.
- Validation of erasure using the key.

Complete erasure of the memory is confirmed by the following message \rightarrow

Message

 erased
Functional description（cont＇d）

Access to secondary

 functionsChoice of secondary functions on the two displays 2,3 and 4 by pressing successively on the key opposite according to main measurement．

A long pressing deletes the display of secondary measurements．
（e）For the main authorised measurements，the last combination selected for displays 2， 3 and 4 is memorised and will be directly reactivated．

Table of secondary functions
Refer to page 9.

	Function Unit		Function Unit				VAC＋DC	VDC	$\begin{gathered} A A C+D C \\ x \end{gathered}$	AdC	Hz	Ω
MTX 3281 ／ 2 ／ 3	FREQ	Hz	PER	S	Func	MATH	x					
MTX 3283	FREQ	Hz	dB	dB	Func．	MATH	x					
MTX 3283	dBm	dBm	REF（dBm）	Ω	Func．	MATH	x					
MTX 3281 ／ 2 ／ 3	Pk＋	V or A	Pk－	V or A	CF	－	x		x			
MTX 3283	w	W	REF（ Ω ）	Ω	Func	MATH	x	x	x	x		
MTX 3281 ／ 2 ／ 3	PER	S	DC＋	\％	Func．	MATH					x	
MTX 3281 ／ 2 ／ 3	PER	S	DC－	\％	Func．	MATH					x	
MTX 3282 ／ 3	PW＋	S	CNT＋	－	Func	MATH					x	
MTX 3282 ／ 3	PW－	S	CNT－	－	Func．	MATH					x	
MTX 3282 ／ 3	Func．MATH		－	－								x
MTX 3282 ／ 3	$\mathbf{V} \times \mathrm{A}$	VA	A	A	Func	MATH	x （＊）	x				

Function MATH $=y=A x+B($ MTX 3282，MTX 3283）
FREQ＝Frequency measurement
PER＝Period measurement
dB＝Measurement of voltage decibels in dB
$\mathbf{d B m}=$ Measurement of power decibels in dBm with REF $=\mathrm{dBm}$ REF
Pk＋＝Measurement of positive peaks（ $\quad * *$ ）
Pk－＝Measurement of negative peaks（＊＊）
CF＝Measurement of peak factor
$\mathbf{w} \quad=$ Calculation of resistive power with REF $=\mathrm{W}$ REF
V x A＝Calculation of power（ $\quad *$ ）limited to 400 Hz
DC＋＝Measurement of positive duty ratio \quad L
DC－＝Measurement of negative duty ratio 〕－
PW＋＝Measurement of pulse－width or of positive durations $\quad\rfloor$
PW－＝Measurement of pulse－width or of negative durations \square
CNT＋＝Counting of positive pulses $ـ$（ $* *)$
CNT－＝Counting of negative pulses 〕く（＊＊）
（＊＊）Measurement reset to zero：by pressing on key．
（6）For optimal use，refer to \＆．Technical Specifications．

Functional description (cont'd)

Access to secondary functions (cont'd)

Upon activation of $\mathbf{d B}$ measurements, the value measured is taken as voltage reference (V ref).

The calculation is as follows:

$$
20 \log _{10}(\mathrm{~V} \text { measured / V ref). }
$$

(3) The voltage reference (V ref) cannot be modified.

The MATH function is displayed when its parameters allow it (see MATH Func.).
For the dBm and resistive power measurements, see Measurement menu for the adjustment of related reference resistances (dBm REF, W REF) and to know the calculation formulas.

The calculation of power $\mathbf{V} \times \mathbf{A}(\mathrm{VA})$ requests a 3rd connection to the A input (connected to the same circuit) in order to measure simultaneously: DC voltage (main display), DC power (display 3, measurement always in AC+DC).
(9) The link on the COM input must be short and have a large diameter in order to limit the voltage drop which influences the Volt measurement.

Functional description (cont'd)

MATH function

MTX 3282
MTX 3283

Adjustment of MATH function

The MATH function $(y=A x+B)$ enables measuring any physical quantity in:

- Volts (0-10 V process or high-voltage probe, for example)
- Amperes (current loop 4-20 mA or current clamp, for example)
- Frequency (output measurement, rotation speeds, for example)
- Ohms (resistive position, for example)
and converting it and to assign the adequate unit, to obtain the direct reading of the original parameter on the instrument. Depending on the parameter measured, the device calculates the related MATH function.
The programming takes place in 4 phases:
Selection of parameter X measured ($\mathrm{V}, \mathrm{A}, \Omega, \mathrm{Hz}$)
Definition of coefficient A of function $y=A x+B$
Definition of coefficient B of function $y=A x+B$
Definition of physical unit to be displayed
e. Coefficients A, B and the unit are programmable for each amount measured ($\mathrm{V}, \mathrm{A}, \Omega, \mathrm{Hz}$).

The MATH mode is configured in the MATH function in the Configuration Menu.

- Opening of Configuration Menu using key

- Selection of function MATH Func. using keys \square.

- Validation of MATH Func. using key

Selection of function to be adjusted

- Selection of Function menu using keys \square.
MATH function

Function	V
Coef A	\square
Coef B	\square
Unit	\square
Function to be set	

- Selection of measurement $(\mathrm{V}, \mathrm{A}, \Omega, \mathrm{Hz})$ using key
e. Default function V.

Functional description (cont'd)

Definition of coefficient A

Definition of coefficient B

The MATH function applied to the physical quantity (x) measured is $y=A x+B$.

- Selection of the coefficient A menu (Coef A) in MATH function.
- Validation of Coef A (coefficient A) using key

Coef. A

+2.0000 E+01

- Selection of digit to be modified or of exponent using key
- Modification of value using keys \square.
- Validation of coefficient A and menu exit using key \qquad
e. Coefficient A by default is 1 .
- Selection of coefficient B menu (Coef B) in MATH function.
- Validation of Coef B (coefficient B) using key

- Selection of digit to be modified using key
- Modification of value using keys $\square \triangle$.
- Validation of coefficient B and menu exit using key m.
e. Coefficient B by default is 0 .

The unit of the MATH function may be defined so as to obtain the direct reading of the original physical quantity measured by the instrument.

- Selection of Unit menu in MATH function.
- Validation of Unit using key

- Selection of letter or character to display using key
- Validation of letter or character using keys \square.
- Validation of the unit (3 characters max.) and menu exit using key m.

The symbol Δ is used to switch from uppercase letters to lowercase.
The symbol \square is used to erase the last character.
d. MATH unit by default (without).

Functional description (cont'd)

Function ()

Application of the
favourite function - -) acc. to its programmed measurements (V, A, $\Omega, H z$)

Adjustment of function $\left.{ }^{-}\right)$

The favourite function \odot recalls directly the specific measurement you use most frequently and that you will have carefully defined previously.
This function is of the same type as the MATH function $(y=A x+B)$.
When you measure any physical quantity, this function enables you to convert it and to assign the appropriate unit, to obtain the direct reading of the original amount on the instrument.
Depending on the amount measured, the device calculates the related function ©), if the parameters of the latter correspond to the amount measured.

Programming takes place in 4 stages:

1. Selection of the amount X measured $(\mathrm{V}, \mathrm{A}, \Omega, \mathrm{Hz})$
2. Definition of coefficient A of function $y=A x+B$
3. Definition of coefficient B of function $y=A x+B$
4. Definition of the physical unit to be displayed

- Access to the type of measurement using key $;$
- AC, DC or AC+DC for measurements V and A
- Access to the frequency range using key :)
- Frequency < 900 kHz (default) or $>900 \mathrm{kHz}$ for Hz measurements
- Control of operating modes using key Range:
- AUTO, AUTO PEAK, MANU for V and A measurements
- AUTO, MANU for Ω measurements
@ Pressing one of the keys $\square \Delta$ will switch directly to MANUal mode, then modify the range for measurements V, A and Ω.
Modification of the voltage range for Hz function.
- Control of display holding using key

Hold

- HOLD, AUTO HOLD, NO HOLD for V and A measurements
- HOLD, NO HOLD for Ω, Hz measurements
- Activation, deactivation of relative mode using key
- Activation, deactivation of monitoring mode using key
- Activation, deactivation automatic recording using key

The function is configured in Func. $)$ in the Configuration Menu.

- Opening of Configuration Menu using key \qquad
- Selection of function Func. () using keys \square. Validation using key

Configuration	
General	\square
Measure	\square
Func. ©	\square
Func. MATH	\square
Function P) setting	

(8) A long pressing on opens directly the Function © menu.

Functional description (cont'd)

Selection of adjustment parameters

- Selection of adjustment parameters using keys $\square \square$.

Function \cdot	
Function	V
Coef A	B
Coef B	Unit
Unition selection	

- Selection of Function menu using keys \square.
- Selection of amount measured ($\mathrm{V}, \mathrm{A}, \Omega, \mathrm{Hz}$) using key
e. Default function V.

The $:$ favourite function applied to the physical quantity (x) measured is the same as the MATH function $(y=\mathbf{A x}+\mathbf{B})$.
For the definition of coefficients \mathbf{A}, \mathbf{B} and the unit, see the related menus of the MATH function.
© Coefficient A is by default $1, B$ by default 0 , unit by default (without).

- Symbol $)$ of favourite function
- AUTO Mode active
- DC Measurement
- W Unit
- MEM Mode active

Functional description (cont'd)

SX-DMM
 Software kit (option)

Connection of optical cables RS232-DB9F or USB (option)

Installation of

 SX-DMM softwareBluetooth
(on -BT version)

These multimeters can interface directly with a computer or a PC using the SX-DMM software kit (HX0050 option):

In the menu General settings of the multimeter:

- Select infra-red communication (IR by default) using the Comm function.
- Select Modbus communication protocol.
- Select the infra-red transmission speed using the IR baud function: 9600 / 19,200 / 38,400 Bauds/s.

The transmission speed by default is 9600 Bauds/s.

The other transmission parameters are set (8 data bits, 1 stop bit, no parity).

1. Then connect the optical cable to the optical input of the multimeter (located next to the multimeter inputs). A mechanical failsafe prevents reversing of the connection direction.
Connect cable RS232-DB9F or USB to one of the corresponding inputs of the PC.
2. Verify that the RS232 interface parameters of the PC are identical to those of the multimeter.

For the USB optical cable (option), install, if necessary, the recognition software on your PC (see CD-Rom manual provided).

1. Install the SX-DMM software on the PC using the CD ROM.
2. Launch the software to perform data acquisition and study the different display possibilities (curves, tables...).
(9) The symbol (RS232) flashes on the display during control of the instrument from the PC (REMOTE mode).

For more information, refer to software help menu.
(3) In this mode, the multimeter keyboard is locked, except for key which is used to exit this mode.

The -BT versions of the multimeters are fitted with a Bluetooth module. They integrate the Serial Port Profile service used to communicate with a computer fitted with any type of Bluetooth adapter.
If your computer does not have a Bluetooth module, the PC USB/Bluetooth adapter (P 01637301) is required.
To install these pilots, refer to the accompanying instructions.
Virtual RS232 serial communication between the multimeter (Server) and the PC (Customer) requires a connection on the PC side.

No configuration is required on the multimeter side, except for activation of Bluetooth (BT) communication via the Comm. function in the General Settings menu.

Functional description (cont'd)

Bluetooth (cont'd)
Creating a Bluetooth connection

(for first connection only)

To activate connection with the multimeter, the Bluetooth identifying code is " 0000
(3) The controls cited below are those of the PC USB/Bluetooth adapter (P01637301). They may be designated differently on another adapter.

Steps	Actions
1	Power up the multimeter.
2	Configure it for Bluetooth (BT) via the configuration menu.
3	Create a new connection using the software controlling your Bluetooth dongle on the PC side by: - clicking on the Bluetooth Manager icon on the menu bar at the bottom of the screen - selecting the New connection function - selecting Express Mode (recommended), then clicking on Next - selecting the Bluetooth peripheral of the multimeter then by clicking on Next - clicking on Next after configuration of a COM port - redefining the name of the connection and its icon (if required) then clicking on Next - clicking on Finish to save the connection information

You can verify that the connection has been created by viewing it, using the software controlling your PC USB/Bluetooth adapter.

For additional information, refer to the Help menu linked to the Bluetooth utility.

Connect Disconnect
d With some Bluetooth adapters, rebooting of the PC is recommended to validate the connection.
ed The connection parameters are specific to each multimeter. They must be assigned manually, but only the first time.

Example

Reactivation of the connection after shutdown

Communication with several multimeters

The PC USB/Bluetooth adapter is used to communicate simultaneously with several multimeters in the MTX Mobile family.

For each multimeter, you must repeat the previous configuration procedure, while making sure to assign them a different COM port.
(6) Depending on the type of adapter, first make a COM port available.

Technical specifications

Accuracy: Only the values assigned a tolerance or a limit constitute guaranteed values. " $n \%+n D$ " means Values without tolerance are given for information (standard NFC 42670). "n\% of reading + n

Digit"
(as per CEI 485)
The technical specifications are guaranteed only after 30 min warm-up period.
Except special indication, they are valid from 5 to 100% of the range of measurement.

Voltage
measurement

AC voltage
VAC and VAC+DC TRMS

- The 100 mV range is present in MANUal mode only.
- In VAC \& VAC+DC modes and for signals > 1 kHz, the uncertainty range is given for information only : it is recommended to use the formulas below.

MTX 3282
(*) in VAC mode

(**) | Mimitation in |
| ---: |
| high frequency |

$(* * *)$ typical values

Range	Input impedance	Resolution	Accuracy		
			1 to $75 \mathrm{kHz}(\log (10)=1)$	75 to 100 kHz	
$100 \mathrm{mV}(*)$	$1 \mathrm{G} \Omega-10 \mathrm{M} \Omega$	$1 \mu \mathrm{~V}$	$1 \% \pm 50 \mathrm{D}$	$1 \%+5 \% \times \log (1+0.2 \times[\mathrm{F}(\mathrm{kHz})-1]) \pm 50 \mathrm{D}(* * *)$	$10 \% \pm 50 \mathrm{D}(* * *)$
1000 mV	$10.5 \mathrm{M} \Omega$	$10 \mu \mathrm{~V}$	$0.5 \% \pm 50 \mathrm{D}$	$0.5 \%+5 \% \times \log (1+0.25 \times[\mathrm{F}(\mathrm{kHz})-1]) \pm 50 \mathrm{D}$	$10 \% \pm 50 \mathrm{D}(* * *)$
10 V	$10.5 \mathrm{M} \Omega$	0.1 mV	$0.3 \% \pm 50 \mathrm{D}$	$0.3 \%+6 \% \times \log (1+0.16 \times[\mathrm{F}(\mathrm{kHz})-1]) \pm 50 \mathrm{D}$	$10 \% \pm 50 \mathrm{D}$
100 V	$10 \mathrm{M} \Omega$	1 mV	$0.3 \% \pm 50 \mathrm{D}$	$0.3 \%+6 \% \times \log (1+0.16 \times[\mathrm{F}(\mathrm{kHz})-1]) \pm 50 \mathrm{D}$	$10 \% \pm 50 \mathrm{D}$
$1000 \mathrm{~V}(* *)$	$10 \mathrm{M} \Omega$	10 mV	$0.3 \% \pm 50 \mathrm{D}$	$0.3 \%+6 \% \times \log (1+0.16 \times[\mathrm{F}(\mathrm{kHz})-1]) \pm 50 \mathrm{D}$	$10 \% \pm 50 \mathrm{D}$

(*) in VAC mode (***) typical values from 50 kHz

Range	Input impedance	Resolution	Accuracy		
			400 Hz to 4 kHz	4 to 100 kHz	
$100 \mathrm{mV}(*)$			$1.5 \% \pm 40 \mathrm{D}$	$1,5 \%+0,417 \%$ $\times[\mathrm{F}(\mathrm{kHz})-0,4] \pm 40 \mathrm{D}$	$3 \%+0.065 \%$ $\times[\mathrm{F}(\mathrm{kHz})-4] \pm 40 \mathrm{D}(* * *)$

MTX 3283
(**) \ limitation in high frequency (***) typical values
(*) in VAC mode (***) typical values

On this position, you measure the true RMS value of an AC voltage with its DC component (no capacitive coupling): so-called TRMS measurement.

MTX 3283	Range	Input impedance		Resolution		Accuracy					
				$\begin{gathered} 45 \mathrm{~Hz} \text { to } \\ 1 \mathrm{kHz} \end{gathered}$	1 to $100 \mathrm{kHz}(\log (10)=1)$		100 to 200 kHz				
	100 mV (*)	$1 \mathrm{G} \Omega-10 \mathrm{M} \Omega$				$1 \mu \mathrm{~V}$		$1 \% \pm 50 \mathrm{D}$	$1 \%+8 \% \times \log (1+\underset{(* * *)}{0,06} \times[F(\mathrm{kHz})-1]) \pm 50 \mathrm{D}$		$15 \% \pm 50 \mathrm{D}(* * *)$
(**) $\$! limitation & 1000 mV & \multicolumn{2}{\|l	}{$10.5 \mathrm{M} \Omega$}	$10 \mu \mathrm{~V}$		$0.5 \% \pm 40 \mathrm{D}$	$0.5 \%+5 \% \times \log (1+0,2 \times[F(\mathrm{kHz})-1]) \pm 50 \mathrm{D}$		$15 \% \pm 50 \mathrm{D}(* * *)$				
in high frequency	10 V	$10.5 \mathrm{M} \Omega$		0.1 mV		$0.3 \% \pm 30 \mathrm{D}$	$0.3 \%+8 \% \times \log (1+0,06 \times[F(k H z)-1]) \pm 30 \mathrm{D}$		$15 \% \pm 30 \mathrm{D}$		
(***) typical	100 V	$10 \mathrm{M} \Omega$		1 mV		0.3 \% $\pm 30 \mathrm{D}$	$0.3 \%+8 \% \times \log (1+0,06 \times[F(\mathrm{kHz})-1]) \pm 30 \mathrm{D}$		$15 \% \pm 30 \mathrm{D}$		
	Range	Input impedance	Resolution		Accuracy						
					45 to 400 Hz		400 Hz to 4 kHz	4 to 50 kHz	50 to 200 kHz		
(*) in VAC mode (***) typical values	100 mV (*)	$1 \mathrm{G} \Omega-10 \mathrm{M} \Omega$	$1 \mu \mathrm{~V}$		1.5 \% $\pm 40 \mathrm{D}$		$\begin{gathered} 1.5 \%+0.417 \% \\ \times[F(\mathrm{kHz})-0.4] \\ \pm 40 \mathrm{D} \end{gathered}$	$\begin{gathered} 3 \%+0.0217 \% \\ \times[\mathrm{F}(\mathrm{kHz})-4] \\ \pm 40 \mathrm{D} \end{gathered}$	$\begin{gathered} 5 \%+0.067 \% \\ \times[\mathrm{F}(\mathrm{kHz})-50] \\ \pm 40 \mathrm{D}(* * *) \\ \hline \end{gathered}$		

Technical specifications (cont'd)

```
    AC voltage (**) BP: Freq [kHz] limited to: 15,000 / U applied [V]
        U applied [V] limited to : 15,000 / Freq [kHz]
    * Example : U applied = 1000 VAC }->\mathrm{ max. frequency : 15,000 / 1000=15 kHz
In the presence of a continuous component:
                Additional error: (UDC / U measured) x (0,7% + 70D)
* Example: UDC =2 V, U measured = 5 Vrms }->\mathrm{ additional error : 0.28% + 28D
Rejection: common mode>80 dB at 50 Hz or 60 Hz depending on selection
Automatic or manual selection of ranges.
Protection by varistors.
Maximum permanent acceptable voltage: 1000 VACrms.
Specifications valid from:
20 to \(100 \%\) of range in the 20 kHz to 200 kHz MTX 3283 band,
20 kHz to 100 kHz MTX 3282
20 kHz to 50 kHz MTX 3281 .
d As soon as the PEAK symbol is displayed, connect to AUTO PEAK : MTX 3282 MTX 3283
Influence of peak factor on accuracy in VAC, VAC+DC at 50\% of the range:
- \(1 \%\) for a peak factor between 4,5 and 6
- \(5 \%\) for a peak factor between 6 and 9
```

DC voltage In "DC" mode, you measure the value of a DC voltage or the DC component of VDC an AC voltage, once the filter is activated, see p .15.
e. The 100 mV range is present in MANUal mode only.

MTX 3281

Range	Input impedance	Resolution	Protection	Accuracy
$100 \mathrm{mV}(*)$	$10 \mathrm{M} \Omega / 1 \mathrm{G} \Omega$	$1 \mu \mathrm{~V}$		
	1000 mV	$20 \mathrm{M} \Omega / 1 \mathrm{G} \Omega$	$10 \mu \mathrm{~V}$	1450 Vpk
10 V	$10.5 \mathrm{M} \Omega$	0.1 mV		
100 V	$10 \mathrm{M} \Omega$	1.0 mV		
1000 V	$10 \mathrm{M} \Omega$	10 mV		$0.1 \% \mathrm{D}$

MTX 3282

Range	Input impedance	Resolution	Protection	Accuracy
$100 \mathrm{mV}(*)$	$10 \mathrm{M} \Omega / 1 \mathrm{G} \Omega$	$1 \mu \mathrm{~V}$	1450 Vpk	0.1\% + 30D
1000 mV	$20 \mathrm{M} \Omega / 1 \mathrm{G} \Omega$	$10 \mu \mathrm{~V}$		0.05\% + 8D
10 V	$10.5 \mathrm{M} \Omega$	0.1 mV		.03\% + 8D
100 V	$10 \mathrm{M} \Omega$	1.0 mV		
1000 V	$10 \mathrm{M} \Omega$	10 mV		0.035\% + 8D

MTX 3283

Range	Input impedance	Resolution	Protection	Accuracy
$100 \mathrm{mV}(*)$	$10 \mathrm{M} \Omega / 1 \mathrm{G} \Omega$	$1 \mu \mathrm{~V}$		
1000 mV	$20 \mathrm{M} \Omega / 1 \mathrm{G} \Omega$			$0.1 \%+30 \mathrm{D}$
10 V	$10.5 \mathrm{M} \Omega$	1450 Vpk	$0.05 \%+8 \mathrm{D}$	
100 V	$10 \mathrm{M} \Omega$			
1000 V	$10 \mathrm{M} \Omega$			
	10 mV			

(*) - Accuracy with filter (p. 15) and REL mode activated (Δ measurement).

- Recovery after release of the protection (> 10 V) approx. 10 s .
- Protection 1 min. max.

Specifications valid from 0% to 100% of the range
Rejection: common mode: > 120 dB with 50 Hz and 60 Hz acc. to selection serial mode: $\quad>60 \mathrm{~dB}$ with 50 Hz and 60 Hz acc. to selection
Automatic or manual selection of the ranges. Protection by varistors.

Technical specifications (cont'd)

Current measurement

ADC current
In "ADC" mode, you measure the value of a DC current or the DC component of an AC current.

MTX 3281
MTX 3282
MTX 3283

Range	put impedance	Resolution	Protection	Accuracy
1000 ¢ A	$\approx 170 \Omega$	10 nA	$\begin{gathered} 11 \mathrm{~A} \\ 20 \mathrm{~A}<30 \mathrm{~s} \end{gathered}$	0.1 \% + 15D
10 mA	$\approx 17 \Omega$	$0.1 \mu \mathrm{~A}$		0.08\% + 8D
100 mA	$\approx 1.7 \Omega$	$1 \mu \mathrm{~A}$		0.08 \% + 8
1000 mA	$\approx 0.17 \Omega$	$10 \mu \mathrm{~A}$		0.15 \% + 8D
10 A	$\approx 0.03 \Omega(*)$	$100 \mu \mathrm{~A}$		0.5 \% + 15D
$100 \mathrm{~A}(* *)$		$1000 \mu \mathrm{~A}$		

$(*)$ with the fuse delivered with the instrument (**) 100 A range limited to 20 A Specifications valid from 0 \% to 100 \% of range

AAC current, AAC+DC TRMS

MTX 3281

Range	put impedance	Resolution	Protection	Accuracy	
				45 Hz to 1 kHz	1 to 20 kHz
$1000 \mu \mathrm{~A}$	$\approx 170 \Omega$	10 nA	$\begin{gathered} 11 \mathrm{~A} \\ 20 \mathrm{~A}<30 \mathrm{~s} \end{gathered}$	$1 \% \pm 40 \mathrm{D}$	$1 \%+0.25$ \% x [F(kHz) - 1] $\pm 30 \mathrm{D}$ (***)
10 mA	$\approx 17 \Omega$	$0.1 \mu \mathrm{~A}$		$1 \% \pm 30 \mathrm{D}$	$1 \%+0.1 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$
100 mA	$\approx 1.7 \Omega$	$1 \mu \mathrm{~A}$		$1 \% \pm 30 \mathrm{D}$	$1 \%+0.1 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$
1000 mA	$\approx 0.17 \Omega$	$10 \mu \mathrm{~A}$		$1 \% \pm 30 \mathrm{D}$	$1 \%+0.1 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$
10 A	$\approx 0.03 \Omega$ (*)	$100 \mu \mathrm{~A}$		$1 \% \pm 300 \mathrm{D}$	$1 \%+0.15 \% \times[F(k H z)-1] \pm 300 \mathrm{D}$
100 A (**)		$1000 \mu \mathrm{~A}$		$2.5 \% \pm 30 \mathrm{D}$	$2.5 \%+0.15 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$

Range	Input impedance	Resolution	Protection	Accuracy		
				45 Hz to 1 kHz	1 to 20 kHz	20 to 50 kHz
$1000 \mu \mathrm{~A}$	$\approx 170 \Omega$	10 nA	$\begin{gathered} 11 \mathrm{~A} \\ 20 \mathrm{~A}<30 \mathrm{~s} \end{gathered}$	0.5 \% $\pm 40 \mathrm{D}$	$0.5 \%+0.25 \% \underset{(* \times *)}{(\mathrm{kHz})-1] \pm 30 \mathrm{D}}$	-
10 mA	$\approx 17 \Omega$	$0.1 \mu \mathrm{~A}$		0.3 \% $\pm 30 \mathrm{D}$	0.3 \% + 0.1\% x [F(kHz) - 1	30D
100 mA	$\approx 1.7 \Omega$	$1 \mu \mathrm{~A}$		$0.3 \% \pm 30 \mathrm{D}$	$0.3 \%+0.1 \% \times[F(k H z)-1]$	30D
1000 mA	$\approx 0.17 \Omega$	$10 \mu \mathrm{~A}$		$0.3 \% \pm 30 \mathrm{D}$	$0.3 \%+0.1 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$	-
10 A	$\approx 0.03 \Omega(*)$	$100 \mu \mathrm{~A}$		0.4 \% $\pm 400 \mathrm{D}$	$0.4 \%+0.15 \% \times[F(\mathrm{kHz})-1] \pm 400 \mathrm{D}$	-
100 A (**)		$1000 \mu \mathrm{~A}$		2.5 \% $\pm 40 \mathrm{D}$	$2.5 \%+0.15 \% \times[F(k H z)-1] \pm 40 \mathrm{D}$	-

Range	Input impedance	Resolution	Protection	Accuracy		
				$\begin{gathered} 45 \mathrm{~Hz} \text { to } 1 \\ \mathrm{kHz} \end{gathered}$	1 to 20 kHz	20 to 50 kHz
$1000 \mu \mathrm{~A}$	$\approx 170 \Omega$	10 nA	$\begin{gathered} 11 \mathrm{~A} \\ 20 \mathrm{~A}<30 \mathrm{~s} \end{gathered}$	0.5 \% $\pm 40 \mathrm{D}$	$0.5 \%+0.25 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$ $\left({ }^{* * *}\right)$	-
10 mA	$\approx 17 \Omega$	$0.1 \mu \mathrm{~A}$		0.3 \% $\pm 30 \mathrm{D}$	$0.3 \%+0.1 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$	
100 mA	$\approx 1.7 \Omega$	$1 \mu \mathrm{~A}$		0.3 \% $\pm 30 \mathrm{D}$	$0.3 \%+0.1 \% \times[F(\mathrm{kHz})-1] \pm 30 \mathrm{D}$	
1000 mA	$\approx 0.17 \Omega$	$10 \mu \mathrm{~A}$		0.3 \% $\pm 30 \mathrm{D}$	0.3 \% + 0.1 \% x [F(kHz) - 1] \pm 30D	-
10 A	$\approx 0.03 \Omega$	$100 \mu \mathrm{~A}$		0.4 \% $\pm 400 \mathrm{D}$	0.4 \% + 0.15 \% x [F(kHz) - 1] $\pm 400 \mathrm{D}$	-
$1 \cap \cap \Delta{ }^{* *}$)		1 n ก		2 $5 . \%+\Delta n \mathrm{n}$		

A max. overload of 20 A is acceptable for 30 s max. with a pause of 5 min at least between each measurement.
From 7 A , the measurement is limited to an ambient temperature of $40^{\circ} \mathrm{C}$ and a period of 1 h 30 with a pause of 15 min at least between each measurement.

Specifications valid from 10% to 100% of range for sinusoidal current.
Protection $\quad 1000 \mathrm{Vrms}$ by ceramic HRC type fuse
Fuse $\quad 1000 \mathrm{~V}, 11 \mathrm{~A}>20 \mathrm{kA} \operatorname{Cos} \varphi>0.9(10 \times 38 \mathrm{~mm})$

| MTX 3282 MTX 3283 |
| :--- | :--- |

As soon as the PEAK symbol appears, switch to AUTO PEAK mode :
mA and $\mu \mathrm{A}$ range:
Additional error of 2% for a peak factor between 4.5 and 6
Additional error of 15% for a peak factor between 6 and 9
10 A range:
Zero up to peak factor of 6 .
Voltage drop:
$10 \mathrm{~A}<400 \mathrm{mV} 1 \mathrm{~mA} \approx 160 \mathrm{mV} 10 \mathrm{~mA} \approx 180 \mathrm{mV}$
$100 \mathrm{~mA} \approx 180 \mathrm{mV} 1000 \mathrm{~mA} \approx 300 \mathrm{mV}$

Technical specifications (cont'd)

Frequency

measurement
Main frequency $(\mathrm{Hz}) \quad$ In this position, you measure the frequency of a voltage. AC Signals

MTX 3281	Range	Resolution	Protection	Accuracy
MTX 3281	0.8 to 10 Hz	0.0001 Hz	1450 Vpk	0.02 \% $\pm 8 \mathrm{D}$
MTX 3282	10 to 100 Hz	0.001 Hz		
MTX 3283	100 to 1000 Hz	0.01 Hz		
	1000 Hz to 10 kHz	0.1 Hz		
	10 to 100 kHz	1 Hz		
	100 to 1000 kHz	10 Hz		
	1 MHz to 2 MHz	100 Hz		

Range	Sensitivity (applicable on rectangular signals only)				
	100 mV	1 V	10 V	100 V	1000 V
0.8 Hz to 10 Hz	15% of range	25% of range	15% of range	15% of range	15% of range
10 Hz to 100 kHz	10% of range	20% of range	10% of range	10% of range	10% of range $(*)$
100 to 500 kHz	$(* *)$	20% of range	typ. 20% of range	20% of range $(*)$	20% of range $(*)$
500 to 1000 kHz			typ. 30% of range		

(*) Freq [kHz] limited to: $15,000 / \mathrm{U}$ applied [V]
U applied [V] limited to: 15,000 / Freq [kHz]
(**) limited to 200 kHz
The measurement is performed by capacitive coupling.
Selection of the manual frequency range < 900 kHz (default) or $>900 \mathrm{kHz}$,
via a short pressing of the key opposite.
Selection of voltage range in manual mode possible, via a long pressing of the key opposite.
Input resistance: $\approx 10 \mathrm{M} \Omega$ (Freq < 100 Hz)
Maximum permanent acceptable voltage: 1000 Vrms. See (*).
Protection by varistors at the voltage input

Parallel
voltage or current or frequency (secondary function)
MTX 3281
MTX 3282
MTX 3283

You measure the frequency and value of a voltage or a current.

Range	Accuracy	Resolution	Admissible overload
0.8 to 10 Hz	0.02 \% + 8D	0.0001 Hz	$\begin{gathered} 1450 \mathrm{Vdc} \\ (1 \mathrm{~min} \mathrm{max.}) \\ \text { on } 500 \mathrm{mV} \text { range } \end{gathered}$
10 to 100 Hz		0.001 Hz	
100 to 1000 Hz		0.01 Hz	
1000 to 10 kHz		0.1 Hz	
10 to 100 kHz		1 Hz	
100 to 200 kHz		10 Hz	

| Range | Sensitivity (applicable on rectangular signals only) Vrms | | |
| :---: | :---: | :---: | :---: | :---: |
| | 100 mV | 10 V to 1000 V | $1000 \mu \mathrm{~A}$ to $20 \mathrm{~A}(* *)$ |
| $(*)$ | | | |

(*) Freq limited to [kHz]: - 15,000 / U applied [V]
U applied [V] limited to [V]: $15,000[\mathrm{~V} * \mathrm{kHz}] /$ Freq [kHz]
(**) limited to 20 kHz MTX 3281; at 50 kHz MTX 3282, MTX 3283 for the
"Ampere" range
Measurement is performed by capacitive coupling
Input resistance: $\approx 10 \mathrm{M} \Omega$ (Freq $<100 \mathrm{~Hz}$)
Protection by varistors at voltage input

Technical specifications (cont'd)

Resistance measurement (Ω)
 MTX 3281
 MTX 3282
 MTX 3283

In this position, you measure the value of a resistance.

Range	Accuracy	Resolution	Protection
1000Ω			
$10 \mathrm{k} \Omega$	$0.1 \%+8 \mathrm{D}$		
		1Ω	
$100 \mathrm{k} \Omega$		10Ω	
$1000 \mathrm{k} \Omega$		100Ω	
$10 \mathrm{M} \Omega$	$0.5 \%+8 \mathrm{D}$	$1 \mathrm{k} \Omega$	
$50 \mathrm{M} \Omega$	$2 \%+8 \mathrm{D}$		

Range	Accuracy	Resolution	Protection
1000Ω	$0.1 \%+8 \mathrm{D}$	$10 \mathrm{~m} \Omega$	
$10 \mathrm{k} \Omega$	1000 Vrms		
$100 \mathrm{k} \Omega$		$100 \mathrm{~m} \Omega$	1Ω
		10Ω	
$1000 \mathrm{k} \Omega$		100Ω	
$10 \mathrm{M} \Omega$	$0.5 \%+8 \mathrm{D}$	$1 \mathrm{k} \Omega$	
$50 \mathrm{M} \Omega$	$2 \%+8 \mathrm{D}$		

Automatic/manual range selection
"Active" protection via CTP thermistor
Measurement voltage: ca. 1.2 V
Maximum voltage developed on open circuit: 4 V typ
e. In range $50 \mathrm{M} \Omega$, in order to avoid the influence of the network and to guarantee the given specifications, it is advised to disconnect the multimeter from Wall Plug.

For measurements higher than $10 \mathrm{M} \Omega$, a shielded cable is recommended. For a 2 wire-link, use very short wires ($<25 \mathrm{~cm}$) and twist them.

Continuity Mode (δ)
MTX 3281
MTX 3282
MTX 3283

Diode Test (\rightarrow)
 MTX 3281
 MTX 3282
 MTX 3283

On this position, you can measure the value of a resistance up to 1000Ω, with steady audio indication at 2 kHz .

Range	Accuracy	Measuring current	Resolution	Protection
Beeper	$0.1 \%+8 \mathrm{D}$	approx. 0.4 mA	$100 \mathrm{~m} \Omega$	1000 Vrms

Detection threshold in continuity mode $\approx 120 \Omega$ (response time $\approx 5 \mathrm{~ms}$).
"Active" protection via CTP thermistor.
Maximum voltage on open circuit: 4 V max, 2 V typ.
Indication of junction voltage in the direction from 0 to 2.6 V in a single range (10 V range)
Accuracy
2 \% ± 30 D
Resolution
Measuring current
Maximum voltage developed on open circuit
"Exceeded" indication
"Active" protection by CTP thermistor 1000 Vrms

Technical specifications (cont'd)

Capacitance measurement (H)	In this position, you can measure the value of a capacitor.												
	Range	Accuracy	Resolution		rement time	Protection							
	10 nF (*)	$1 \%+10 \mathrm{D}$	10 pF	$<0,2 \mathrm{~s}$		1000 Veff.							
	100 nF	$1 \%+5 \mathrm{D}$	100 pF		$<0,5$ s								
$\begin{array}{\|l\|} \hline \text { MTX } 3281 \\ \hline \text { MTX } 3282 \\ \hline \text { MTX } 3283 \\ \hline \end{array}$	1000 nF		1 nF	<2s									
	10 FF		10 nF										
	$100 \mu \mathrm{~F}$		100 nF										
	1000 F	$1 \%+15 \mathrm{D}$	$1 \mu \mathrm{~F}$	$\approx 5 \mathrm{~s} / \mathrm{mF}$									
	10 mF	$1.5 \%+15 \mathrm{D}$	$10 \mathrm{\mu F}$										
	(*) Use the REL function for values < 10% of range to reset to residual zero (compensation of the test lead capacity)												
	Resolution of 1000 points. Automatic/manual range selection. "Active" protection by CTP thermistor.												
e	For measurements lower than 10 nF , a shielded cable is recommended. For a 2 wire-link, use very short wires ($<25 \mathrm{~cm}$) and twist them.												
Temperature measurement with Pt 100 or Pt 1000	In this position, you measure a temperature via a Pt 100 or Pt 1000 sensor.												
	Range	Measuring cu			Accuracy	Protection							
	$-125^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\begin{aligned} & <0.8 \mathrm{~mA}(\mathrm{~F} \\ & <0.5 \mathrm{~mA}(\mathrm{P} \end{aligned}$	$0.1{ }^{\circ} \mathrm{C} \equiv 2 \mu \mathrm{~V}$		$\pm 0.5^{\circ} \mathrm{C}$	1000 Vrms							
$\begin{array}{\|l\|} \hline \text { MTX } 3282 \\ \hline \text { MTX } 3283 \\ \hline \end{array}$					$0,1 \% \pm 1^{\circ} \mathrm{C}$								
	"Active" protection by CTP thermistor Display in ${ }^{\circ} \mathrm{C}$ (Celsius) / K (Kelvin) $/{ }^{\circ} \mathrm{F}$ (Fahrenheit) possible In Temperature measurement, it is possible to modify the scale of the graphic window with the keys 민. The selected scale is recalled in the help line i .												
b													
Temperature measurement with thermocouple J or K	In this position, you measure the temperature via a thermocouple:												
	Thermocouple K Thermocouple J Internal measurement accuracy			from $-40^{\circ} \mathrm{C}$ to $+1200^{\circ} \mathrm{C}$from $-40^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}$									
MTX 3281					range (-	Co $55^{\circ} \mathrm{C}$)							
MTX 3282	Reference temp. accuracy $\pm 3^{\circ} \mathrm{C} /$ typical value Type of thermocouple J and K												
MTX 3283													
dBm measurement (power decibels)	Display of measurement in $\mathbf{d B m}$ in relation to a resistance reference (dBm REF) adjustable from 1Ω to $10,000 \Omega$, factory set at 600Ω.												
MTX 3283	Resolution Absolute error in dB			0.01 dB0.09 x VAC relative error expressed in \%									
	Additional calculation error 0			0.09 0.01 dB AC relative error expressed in \%									
	Measuring range 10			10 mV to 1000 V									
	Protection 1			1000 Vrms									
dB measurement (voltage decibels)	Display of measurement in $\mathbf{d B}$ with the value measured (V ref) at activation of the mode as voltage reference.												
MTX 3283	Resolution			0.01 dB									
	Absolute error in dBAdditional calculation error			$0.09 \times$ VAC relative error expressed in \%									
	Measuring range			10 mV to 1000 V									
	Protection			1000 Vrms									

Technical specifications（cont＇d）

Peak measurement
Pk＋
Pk－

MTX 3281
MTX 3282
$M T X ~ 3283$

SURV Function
（MIN，MAX，AVG）

Resistive power W

Power calculation
V x A
MTX 3283

Duty ratio
DC＋$几$
DC－〕
MTX 3281
MTX 3282
MTX 3283

Pulse counting
 CNT＋$几$
 CNT－乙

MTX 3282
MTX 3283

Secondary values	Peak ranges	Additional error	Protection
Peak V t $>250 \mu \mathrm{~s}$	100 mV to 1000 V	$3 \% \pm 50 \mathrm{D}$	1000 Vrms or 10 Arms
Peak A t＞250 $\mu \mathrm{s}$	$1000 \mu \mathrm{~A}$ to 20 A	$4 \% \pm 50 \mathrm{D}$	

Specifications valid from 20% of the range in A， 10% of the range in V The value of the peak factor results from calculation：（Pk＋－Pk－）／ 2 x Vrms Additional error for $250 \mu \mathrm{~s}<\mathrm{t}<500 \mu \mathrm{~s}: 3 \%$
Measurement zero reset ：by pressing the key

Accuracy and rate：id．specifications Volt and Ampere measurements MTX 3281，MTX 3282，MTX 3283

Display of measurement in relative power in relation to a resistance reference
（W REF）adjustable from 1 to $10,000 \Omega$ ，factory－adjusted to 50Ω ．
The function performed is：（measured voltage）${ }^{2} / \mathrm{W}$ REF（unit W）
（measured current）${ }^{2} * W \operatorname{REF}$（unit W）
Ranges
DC and AC
Resolution
Accuracy
Protection
$100 \mu \mathrm{~W}$
2 x accuracy in VDC or VAC（in \％）
1000 Vrms

In AC and AC＋DC voltage measurement ：this calculation is limited to 400 Hz The current measurement is always performed in AC＋DC．
Accuracy（typical）：V measurement accuracy＋Peak A measurement accuracy
（4）The connection on the COM input must be short and of large diameter，in order to limit the voltage drop which influences Volt measurement．

Display of the measurement in \％of a logic signal（TTL，CMOS．．．）

DC＋Duty ratio \checkmark	$=\theta$
DC－Duty ratio	$=\mathrm{T}-\theta$
Resolution	0．01\％
Minimum duration for θ	$10 \mu \mathrm{~s}$
Maximum duration for T	0.8 s
Minimum duration for T	200 s
Nominal range	5 to 90\％typical
Sensitivity（10 V range）	$>30 \%$ of the Freq range $<1 \mathrm{kHz}$ $>50 \%$ of the Freq range $>1 \mathrm{kHz}$
Absolute error on the duty ratio，expressed in absolute \％	$0.05 \%+0.0001 / \mathrm{T}[\mathrm{t}$ in s］Freq＜ 1 kHz $0.1 \%+0.0005 / \mathrm{T}[\mathrm{t}$ in s］Freq $>1 \mathrm{kHz}$
Additional absolute error	$0.1 \times \mathrm{C} / \mathrm{P}$
（slope at switching to zero）	$\mathrm{C}=$ range in V or in A
	（for range $1000 \mathrm{~V}, \mathrm{C}=5000$ ） $\mathrm{P}=$ slope in $\mathrm{V} / \mathrm{s}, \mathrm{A} / \mathrm{s}$
Protection	1000 Vrms

Depending on triggering conditions of frequency meter．
Minimum pulse duration $5 \mu \mathrm{~s}$
Counting up to 99999
Triggering threshold 10% of range except range 1000 VAC
This threshold is：positive in Ω ，negative in \longleftarrow
Counter reset to zero by pressing the key

Technical specifications (cont'd)

Clock

Influences

Multimeter

Traceability

Depending on triggering conditions of frequency meter.
Resolution
$10 \mu \mathrm{~s}$
Minimum pulse width $100 \mu \mathrm{~s}$
Accuracy
$0.05 \% \pm 10 \mu \mathrm{~s}$
12.5 s

20 \% of range except range 1000 VAC

This threshold is positive in Ω, negative in \urcorner.
Additional error on measurement caused by slope when crossing zero: see §. Measurement of duty ratio.

For negative events, cross the cables.

MTX 3281

MTX 3282, MTX 3283
Accuracy
Display

Relative time with reset to zero at each powering up

Real-time clock
≈ 30 s / month: real-time clock deviation
date - month - year / hour - minute - second

- Specifications of the accuracy in the field of utilization:

Typical specifications $=\operatorname{SPEC}\left(1+0,05 \Delta \mathrm{t}^{\circ} \mathrm{C}\right)$
Specification of the considered measurement. Values given p. 33 to 38.
$\Delta \mathrm{T}$: difference between ambient temperature and input terminal nearest to the field of reference.
2. Example : temperature : $38^{\circ} \mathrm{C}$ DC measurement : $0,02 \%+8 \mathrm{D}$
$\Delta t^{\circ} \mathrm{C}=38-28=10^{\circ} \mathrm{C}$
$\operatorname{SPEC}\left(38^{\circ} \mathrm{C}\right)=(0,02 \%+8 \mathrm{D})(1+0,05 * 10)$
$=0,03 \%+12 \mathrm{D}$

- Electric field under $3 \mathrm{~V} / \mathrm{m}: 1$ per thousand at full scale. This influence does not depend on the temperature.

TRACEABILITY	
Model No. :	3283
Serial No. :	10010110
Firmware Vers. : 1.00	
Hardware Vers. : C	
CALIBRATION	
Last Cal. : 27/11/2005 10:08:25 Next Cal. : $27 / 11 / 2006$ $10: 08: 25$	

In the «General settings», the menu Traceability opens a file with multimeter up-datings :

- Model
- Serial No
- Firmware Version
- Hardware Version

Calibration A periodic calibration (once a year) of the multimeter is necessary to guarantee the given specification (refer to §. Maintenance, Metrological verification)

General characteristics

Environmental
 Conditions

Altitude	$<2000 \mathrm{~m}$
Reference temperature	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Utilization temperature	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Influence of temperature	see \S. Influence
Relative humidity	80% max. for temperatures up to $31^{\circ} \mathrm{C}$
	decreasing linearly to 50% at $40^{\circ} \mathrm{C}$ limited to 70% for $50 \mathrm{M} \Omega$ range
Sealing	IP 51
Operating range	$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Storage range	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Battery charge range	0 to $40^{\circ} \mathrm{C}$

Power supply

MTX 3281

2 possibilities:

- Batteries
- Accumulators

MTX 3282
 MTX 3283

3 possibilities:

- Batteries
- Accumulators
- Wall Plug power unit:

Mains voltage
Frequency

$$
\begin{aligned}
& <2000 \mathrm{~m} \\
& 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\
& \text { see } \S \text {. Influence } \\
& 80 \% \text { max. for temperatures up to } 31^{\circ} \mathrm{C} \\
& \text { decreasing linearly to } 50 \% \text { at } 40^{\circ} \mathrm{C} \\
& \text { limited to } 70 \% \text { for } 50 \mathrm{M} \Omega \text { range } \\
& \text { IP } 51 \\
& -10^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\
& -40^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
& 0 \text { to } 40^{\circ} \mathrm{C}
\end{aligned}
$$

$3 \times 1.5 \mathrm{~V}$ alkaline LR6-AM3 AA
$3 \times 1.2 \mathrm{~V}$ (*) Ni-MH 2400 mAh AA
$3 \times 1.5 \mathrm{~V}$ alkaline LR6-AM3 AA
$3 \times 1.2 \mathrm{~V}$ (*) Ni-MH $2400 \mathrm{mAh} A \mathrm{~A}$
$100 \mathrm{~V} \pm 10 \%$ or $240 \mathrm{~V} \pm 10 \%$
$0.3 \mathrm{~A} 50-60 \mathrm{~Hz} \pm 3 \%$
(*) Other capacities are possible.
Via the wall plug, the accumulators can be recharged without removing them from the multimeter.
Average charging period: 7h30 (with 2400 mAh accumulators)

Endurance • with batteries

- with 2200 mAh accumulators

80 h (VDC mode)
approximately 65 h (VDC mode)

In case of intermittent use of the multimeter, powering by Ni-MH cells is not recommended: this type of cell has an self-discharge rate of 100% after 3 months of non-use.

Endurances are reduced if the LCD backlight and/or the Bluetooth communications interface is used."

Display

Secondary display
useful part $58 \times 58 \mathrm{~mm}$ orientable, LED backlit, transflective improvement of contrast in full light 100,000 points + sign + curve adaptive units + bargraph (40 segments) indicators of modes engaged battery level indicator, dangerous voltage indicator... secondary functions with adapted units

General characteristics (cont’d)

Safety	As per EN 61010-1:	
	- Insulation	class 2
	- Degree of pollution	2
	- Utilisation	interior
	- Altitude	$<2000 \mathrm{~m}$
	Measurement category of "measurement" inputs	CAT III, 1000 V in relation to earth
	Measurement category of "measurement" inputs"	CAT IV, 600 V in relation to earth

EMC This device was designed in accordance with EMC standards in force and its compatibility was tested in accordance with the following standards:

- Emission (cl. A) and Immunity EN 61326-1
- Max. influence in presence of radiated fields

See §. Influences

- Acc. to

UL 61010-1, CSA C22.2 nr. 61010-1
Homologation UL E 309119

RS232-DB9F or USB optical cables (options)

The optical interface ensures insulation in relation to the connected peripheral (PC) for the transfer of data or for remote control of the multimeter.
RS232 communication interface parameters:
Transmission speed: 9600 / 19,200 / 38,400 Bauds/s
6. The other transmission parameters are set (8 data bits, 1 stop bit, no parity).
USB communication interface: delivered with installation software.
Bluetooth
(-BT version only)

Transmission speed
Sensitivity
Max. power
Max. distance
Battery life
38.4 kbit/s
$-90 \mathrm{dBm}$
$20 \mathrm{dBm}(100 \mathrm{~mW})$
ca. 100 m
ca. 40 h (VDC mode) with alkaline batteries

Mechanical characteristics

Casing	- Dimensions	$87.8 \times 265.5 \times 107.5 \mathrm{in} \mathrm{mm} \mathrm{(open} \mathrm{position)}$ $87.8 \times 187 \times 48.6$ in mm (casing closed)
	- Weight	0.450 kg approximately
	- Materials	ABS VO (auto-extinguishing) and PC VO external protective moulding in thermoplastic rubber : SEBS
	- Sealing	IP 51

Delivered with the

 instrumentMTX 3281

MTX 3282

- Quick Check Guide (bilingual Fr - En)
- Set of 3 batteries 1.5 V alkaline LR6-AM3
- Set of PVC test leads -4 mm safety touch prods
- Quick Check Guide (bilingual Fr - En)
- Set of 3 accumulators $1.2 \mathrm{~V} \mathrm{Ni-MH} 2400 \mathrm{mAh}$
- Wall Plug power/charger unit
- Set of silicon test leads -4 mm safety touch prods

MTX 3283

- Quick Check Guide (bilingual Fr - En)
- Set of 3 accumulators $1.2 \mathrm{~V} \mathrm{Ni-MH} 2400 \mathrm{mAh}$
- Wall Plug power/charger unit
- Set of silicon test leads -4 mm safety touch prods

Supplement

delivered with

versions

MTX 328I-COM
MTX 3282-COM
MTX 3283-COM

Optional
 Accessories

ries	- Calibration software of the MTX 328x range - Acquisition software kit: - "Data Viewer" Acquisition software - RS232-DB9F Optical cable - External charger for NiMH cells - USB Optical cable + installation software - Adapter + K thermocouple - Ammeter clamps:				HX0059 HX0050 HX0053 HX0056-Z P06239306
	MN 08 or 09	0.5 to 240 AAC	ratio 1000 /1	40 Hz to 10 kHz	P01120401 or 02
	C100 or 103	0.1 to 1200 AAC	ratio 1000 /1	30 Hz to 10 kHz	P01120301 or 03
	Ampflex	0.5 to 2000 AAC	$1 \mathrm{mV} / \mathrm{A}$	10 Hz to 20 kHz	P01120504
	MN 73	0.01 to 240 AAC	$1 \mathrm{~mA} / \mathrm{mV}$ or $1 \mathrm{~A} / 10 \mathrm{mV}$	40 Hz to 10 kHz	P01120421
	K2	0.1 to 450 mADC	$1 \mathrm{~mA} / 10 \mathrm{mV}$	DC - 1.5 kHz	P01120074
	E6N	O. 0.005 to 80	1 A 11 V or $1 \mathrm{~A} / 10 \mathrm{mV}$	DC - 8 kHz	P01120040A
	PAC21	0.2 to 1400 AAC/DC	1 A 10 mV or $1 \mathrm{~A} / 1 \mathrm{mV}$	DC - 10 kHz	P01120069
	- "2 hands free" Transport Kit - Set of $31.2 \mathrm{~V} \mathrm{Ni}-\mathrm{MH}$ cells - PC Adapter USB/RS232 - PC Adapter USB/BLUETOOTH - USB optical cable - Temperature sensor Pt 1000				HX0052
					HX0051
					HX0055
					P01637301
					HX0056
					HA1263
Spare parts	- Fuse $1000 \mathrm{~V}, 11 \mathrm{~A}, 10 \times 38 \mathrm{~mm}, 20 \mathrm{kA}$ - Wall Plug power unit EU/US - Set of test leads - safety touch prods - Optical cable RS232-DB9F				541171
					X03205
					AG1064
					X02736

888888 (function)	9	display	9, 42
A		duty ratio	39
absolute deviation	19		
AC voltage	33	E	
AC, AC+DC	7	EMC	42
Accessories	3, 43	endurance	41
accumulators	10-13, 43	energy	11, 12
activation (powered)	6, 10	English (Choice of language)	14
alert	5,9	environment	3, 41
amount measured	29, 30	erase	24
Ampere (function)	5,13		
audio warning	5, 14, 18	F	
auto (mode)	18	favourite function	29, 30
auto hold (mode)	8, 18	filter	15
auto peak (mode)	8, 18	French (Choice of language)	14
automatic detection	4	FREQ	22, 25
automatic recording	8,29	frequency measurement	36
automatic stop	14	main functions	7, 17
AVG	20	secondary functions	9, 25
		fuse	4, 5, 13 ,43
B			
back-lighting	8, 9, 15	G	
bargraph	9	General (function)	11
basic (mode)	15	General (menu)	12, 14
batteries	10	general settings	11, 31, 40
Bluetooth	5, 31, 32, 42	Graphical display	9
buzzer	4, 5, 10, 14	guarantee	4
C		H	
cable connection	31	help (i)	7, 9, 31, 32
capacitance measurements	5, 7, 9, 17, 38	HOLD (mode)	8, 18
capacitive coupling	33, 35, 36	humidity	3, 41
casing	42		
charge (recharge)	10-13	I- J - K	
CNT	25, 39	impedance	8, 15
coef. A, coef. B	27, 28, 29	initial settings	14
COM	5, 17, 18	inputs	9
comm.	31	IR baud	31
communications	5	J (thermocouple)	7
configuration	7, 8, 15-18	jack connector	6, 12
configuration (menu)	15-18	K (thermocouple)	7
continuity measurement	17	keyboards	6
continuity mode	37	keys	7, 8
current measurement	7, 16, 34		
		L	
D		LCD contrast	8, 9, 14, 41
date	14, 20		
dB measurement	38	M	
db9f	31, 42, 43	main display	19, 41
dBm REF	15	main functions	7, 16, 17, 24
dBm	38	main measurement	18-21
DC voltage	33, 34	maintenance	4
DC	25, 34, 39	MANU (key)	8, 18, 29
diode measurement	17, 37	MATH (function)	25-30

MAX	$20,21,24$	temperature measurement	$7,8,17,18,38$
measurement category	3	terminal board	6
MEM (function)	$9,23,24$	thermocouple	7,17
MEM (key)	8	time	$13,14,20$
MEM (mode)	$5,8,14,21,22$	traceability	40
memory	24	transient overvoltages	5
MIN	$20,21,24$	type of energy	11
monitoring	29	$\mathbf{U - V - W}$	
N - O		unit	$26,27,28$
NO HOLD (mode)	$8,18,29$	Wall plug	12,13
optical cable	$31,42,43$		
optical link	5		

P

parameters 30
peak factor 18,25
peak measurement 39
PER (period) 25
Pk (peak) 25
power supply 12, 14, 41
power unit (Wall plug) 10, 37, 41, 43
protection
3, 5, 13
Pt100 (sensor) 7
Pt1000 (sensor) 7
pulse counting 39
pulse width 40

R

range 18
recharge (charge) 10-13
recorded data 20,23
recording
20-24, 29, 30
REL
resistance measurement
resistive power
RS 232
8, 9, 17, 18
7, 17, 37
16, 25, 26, 39
$5,9,31,42,43$

S

safety
3, 4, 10, 42
secondary displays
8, 9
secondary functions
9, 23, 25, 36
17, 38, 43
31
software kit
SPEC (function)
21
standby
14
supply
SURV
43
$5,8,9,14,20$
SX-DMM
31, 32

T

TC J (thermocouple) 7, 17
TC K (thermocouple)
temperature

