OX 863B
 150 MHz PORTABLE OSCILLOSCOPE

User's manual

CONTENTS

1. GENERAL INSTRUCTIONS 1
1.1 Safety precautions 1
1.2 Guarantee 2
1.3 Maintenance and metrological verification 2
1.4 Servicing 2
2. DESCRIPTION 3
3. COMMISSIONING 5
4. FUNCTIONAL DESCRIPTION 5
4.1 Autoset 5
4.2 Vertical channels 7
4.3 Display modes 9
4.4 Timebase 11
4.5 Triggering 11
4.6 Trigger delay - Timebase B 15
4.7 Measurement 17
4.8 Other functions. 17
5. DESCRIPTION OF THE INFORMATION DISPLAYED 19
5.1 Key selection. 19
5.2 Voltage measurement 21
5.3 Time and frequency measurement 21
5.4 Phase measurement. 23
5.5 TV Mode (coupling CPT) 23
6. APPLICATIONS 25
6.1 Viewing the calibration signal and adjusting probe compensation 25
6.2 Measuring phase difference 25
6.3 B.W.L. 25
7. SPECIFICATIONS 26
7.1 Vertical deflection 26
7.2 Horizontal deflection (timebase) 27
7.3 Trigger system 27
7.4 Miscellaneous 28
7.5 General features 28
8. ACCESSORIES AND OPTIONS 29
8.1 Accessories 29
9. PROGRAMMING 31
9.1 General description. 31
9.2 Serial link characteristics 31
9.3 PC / oscilloscope link wiring 31
9.4 Command syntaxis 32
9.5 Reading the decalibration potentiometers status. 33
9.6 Reading the oscilloscope configuration 33
9.7 Remote programming software 34
10. SUMMARY TABLES. 35
10.1 Configuration commands 35
10.2 Configuration request 37
10.3 ASCII Table 38

1. GENERAL INSTRUCTIONS

You have just purchased a 150 MHz portable two-channel oscilloscope; we congratulate you on your choice of this high quality product.

This apparatus complies with safety standard EN 61010-1, 1993, +A2 (1995), single insulation, dealing with electronic measurement instruments. Please read these instructions carefully and respect the usage precautions, in order to obtain the best use from it.
Failure to respect warnings and / or usage instructions may damage the apparatus and / or its components and may be dangerous to the user.

1.1 Safety precautions

1.1.1 Before use

- This instrument was designed for use indoors in an environment with a degree of pollution 2 at an elevation of less than 2000 m , a temperature between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, and a relative humidity of 80% up to $31^{\circ} \mathrm{C}$.
- It can be used for measurements on installations $150 \mathrm{~V}, \mathrm{CAT}$ I, or, with the probes supplied with the instrument, on installations 400 V , CAT II. Its power supply is to be connected to the mains 300 V , CAT II.
- Definition of installation categories (see publication IEC 664-1):

CAT I : CAT I circuits are protected by devices limiting transient overvoltages to a low level. Example: protected electronic circuits
CAT II : CAT II circuits are power supply circuits for domestic or digital devices that may include transient overvoltages with an average value. Example: power supply for household appliances and portable tools.

CAT III : CAT III circuits are power supply circuits for power equipment that may include large transient overvoltages.
Example: power supply for industrial machines or equipment
CAT IV : CAT IV circuits may include very high transient overvoltages.
Example: energy arrivals

- Check that your electricity distribution network is within the range 94 to 264 V .

The replacement fuse must be identical to the original fuse. It is located inside the apparatus in a housing on the cathode ray tube support part.

- Earth all metallic parts that are accessible to touch (including the working table).
- You are advised to use the accessories delivered with the instrument or proposed as options. Check that they are in perfect working condition before use.
- Plug the cable into a socket fitted with an earth connection.

1.1.2 During use

- Select vertical sensitivity and timebase ranges adapted to the measurement.

Never touch an unused terminal when the apparatus is connected to measurement circuits.

1.1.3 Symbols

CAUTION : Refer to the instruction manual.
Incorrect use may result in damage to the device or its components.

DANGER: High voltage, risk of electric shock.

Earth

1.1.4 Instructions

- Before opening the apparatus, always disconnect it from the mains power supply and measurement circuits, and make sure that you are not charged with static electricity which could damage internal components.
- Any repair, maintenance or adjustment of the oscilloscope when it is powered may only be done by qualified personnel, after reading the instructions in this manual.
- A "qualified person" is a person who is familiar with the installation, construction and use and the dangers present. He is authorized to switch the installation and equipment on and off in accordance with the safety rules.
- Take care not to obstruct ventilation holes when using the apparatus.

Some internal capacitors may retain a dangerous potential, even after the apparatus has been switched off.

1.2 Guarantee

This oscilloscope is guaranteed against any material defect or manufacturing vice in accordance with the general conditions of sale.

During the guarantee period (2 years), the apparatus may only be repaired by the manufacturer, and the manufacturer will be free to decide to repair or replace all or part of the apparatus. The guarantee conditions state that the manufacturer will pay for return transport.
The guarantee is not applicable in the following cases:

1. any improper use of the equipment or if it is used in association with incompatible equipment;
2. modification of the equipment without explicit authorization by the manufacturer's technical departments;
3. work done by a person not approved by the manufacturer;
4. adaptation to a specific application not included in the definition of the equipment or by the operating instructions;
5. a shock, drop or flooding.

1.3 Maintenance and metrological verification

Return your instrument to your distributor for any work to be done within or outside the guarantee.

1.4 Servicing

Clean the instrument with a wet cloth and soap. Never use abrasive products or solvents.

2. DESCRIPTION

This instrument is a 150 MHz portable two-channel oscilloscope, designed to satisfy the most demanding users.

Performance

- $2 \times 150 \mathrm{MHz}$ channels
- Input range: 2 mV to $5 \mathrm{~V} / \mathrm{div}$.
- Triggering up to 180 MHz
- Dual resynchronized timebase
- AUTOSET
- Bandwidth limiting (BWL)
- 0 V reference display
- Remote control option
- TV line counting
- Cursor and information display on the screen

Reliability

- Use of surface mount components and LSI circuits
- Full microprocessor-driven control
- Front panel separate from measurement circuits
- Internal switching by miniature relays and electronic switches

Serviceability

- Quick to open with full access to all components without removing the printed circuit

User interface

- Controls organized by function
- Functions implemented simply by pressing momentary action buttons
- Active functions indicated by leds
- Last configuration stored and recalled automatically on power up

figure 1

3. COMMISSIONING

Caution! Observe all the safety instructions set out in section 1.

- Set the controls as shown below :

Potentiometer	Identifier	Position
INTENSITY	(4)	right end stop
POSITION	(5) (7) (9)	mid travel
HOLDOFF	(11)	left end stop
LEVEL	(14)	mid travel
VAR	(16) (31) (36)	left end stop
FOCUS	(1)	mid travel

- Press the POWER on/off key (40) : the last stored configuration is reinstated.
- Validate the key AUTO (17).
- Adjust the intensity (4) and focus (1) (figure 1).
- Apply the signal to be displayed to CH 1 or CH 2 .
- Briefly press the AUTOSET key (3) (see § 4.1.).

Note If the instrument does not work, respect a break of 5 sec. before switching it on again (the interval between 2 successive switching-on must be 5 sec. at least).

4. FUNCTIONAL DESCRIPTION

4.1 Autoset

Pressed briefly: AUTOSET (key 3)
The autoset function automatically hunts for the following :

* channel
* level
* vertical sensitivity
* trigger edge
* horizontal deflection

The autoset function automatically sets the oscilloscope to the following configuration :

* PTP synchro
* BWL (off)
* AC coupling of the connected channel
* BDT A
* X 1
* DC coupling of the trigger source

The autoset function does not affect :

* POSITION (H and V)
* TRACE SEP
* VAR
* INTENSITY
* DELAY
* FOCUS

figure 2

4.2 Vertical channels

(5-9) POSITION - Vertical alignment of traces.
(7) POSITION - Horizontal alignment of traces. This knob operates on CH 1 and CH 2 together.
(32-37) VOLT/DIV - Vertical sensitivity: 11 positions (2 mV to $5 \mathrm{~V} / \mathrm{div}$.).

- Active range displayed on the screen.
(31-36) VAR - Continuous vertical sensitivity adjustment. When the knob is not locked in the left end stop position, the UNCAL LED is on and the corresponding symbol displays on the screen.
(30-35) AC DC GND
Pressed briefly : selects input coupling.

AC Displays the AC component (DC component off).
DC Displays the complete signal (0 to 100 MHz).
GND Displays the channel's 0 V reference (without short-circuiting the input signal). Used to position the trace accurately on screen using POSITION controls (5 and 9).

Held down : Displays the 0 volt reference [$35(\mathrm{CH} 1)$ or $30(\mathrm{CH} 2)$].
(34-29) CH1 and CH2-BNC socket inputs for signals to be monitored.

PROBE - x $1, \times 10, \times 100$ probe factor.
This factor is taken into account in case of display of :

- ranges
- cursor measurements.

figure 3

4.3 Display modes

(6-8) CH1-CH2-ALT - CHOP - ADD - XY - BWL

Select by pressing $\rightarrow(8)$ or $\leftarrow(6)$:

CH1 Displays CH1 only.

CH2 Displays CH2 only.

ALT Displays CH 1 and CH 2 (in alternate mode).

CHOP Displays CH 1 and CH 2 in chopped mode; during a single sweep,

 the channel switches from CH 1 to CH 2 at the chopping frequency (500 kHz).ADD Displays $\mathrm{CH} 1+\mathrm{CH} 2$; the difference between $\mathrm{CH} 1-\mathrm{CH} 2$ is displayed if - CH 2 mode is on.

XY Displays CH 1 and CH 2 in $\mathrm{X}-\mathrm{Y}$ mode $(\mathrm{X}=\mathrm{CH} 1, \mathrm{Y}=\mathrm{CH} 2)$.
The timebase is off and vertical alignment is adjusted by POSITION control (10).

BWL Bandwidth limited to 20 MHz for CH 1 and CH 2 simultaneously. At the same time press buttons 6 and 8 .
Enables the reduction of the thickness of the trace when the masses are long or when the input junction is not normally shielded.

BWL function has a mechanism which launch it as soon as one of the 2 channels is on $2 \mathrm{mV} /$ div.
If the necessary bandwidth is of 100 MHz , desactivate the BWL with (6) et (8).
Inhibited automatic device in AUTOSET.
(9) -CH2 Inverts CH .

figure 4

4.4 Timebase

(18) T/DIV. A/B - Sweep speed :

20 positions (50 ns to $100 \mathrm{~ms} /$ div.) for the 1 st timebase A . 20 positions (50 ns to $100 \mathrm{~ms} / \mathrm{div}^{\text {. }}$) for the 2nd timebase B. Timebase display on the screen.
(16) VAR - Continuous sweep speed adjustment for timebase A. When the knob is not locked in the left end stop position, the UNCAL LED is on and the corresponding symbol displays on the screen.
(11) HOLDOFF - Continuous adjustment of the time between consecutive sweeps. This control can be used to inhibit unwanted trigger events (multiple trigger conditions in one period of the signal under observation). In normal use, set the knob to the left end stop position.
x10 - Horizontal expansion (x 10).
(26-27) TRACE SEP - Separation between the A and B traces in ALT mode.
With this control, the TBB delayed trace can be positioned vertically in relation to the TBA main trace.

4.5 Triggering

(19-20) SOURCE - Select by pressing \rightarrow (19) or $\leftarrow(20)$:
The same source synchronizes both timebases A and B.
CH1 Synchronized on channel CH1.
CH2 Synchronized on channel CH2.
ALT Trigger source defined by display mode:

Display mode	Trigger source
CH 1	CH 1
CH 2	CH 2
ALT	channel 1 synchronized with CH 1
	channel 2 synchronized with CH 2
CHOP	CH 1
ADD	CH 1
-CH 2	CH 2

LINE Synchronized on mains power supply frequency. Phase can be adjusted using the LEVEL control. The coupling control is disabled.

EXT Synchronized on external source.
(17) AUTO - Automatic timebase trigger

Traces visible even without trigger event.
(14) LEVEL - Trigger level adjustment

The TRIG LED is on when a trigger event is detected (timebase activated).

figure 5
(23) EXT - BNC socket for external sync signal input.
(See Specifications, Section 7)
Trigger slope
led on : trigger on negative edge led off : trigger on positive edge Symbol displays on the screen (see Section 5.2.)

P-P - Peak-to-peak trigger
The reference trigger level (accurately set using LEVEL) is automatically set between the low and high peaks of the signal, so ensuring triggering regardless of the amplitude or DC component of the source signal (80% of signal amplitude for $f>100 \mathrm{~Hz}$).
(21-22) COUPLING - Trigger source coupling
Select by pressing \rightarrow (21) or $\leftarrow(22)$:
DC DC coupling (See Specifications, Section 7)
AC AC coupling (See Specifications, Section 7)
LFR Rejects frequencies < 10 kHz from source signal (facilitates observation of signals with unwanted 50 Hz low frequency component, for example).

HFR Rejects frequencies > 10 kHz from source signal (facilitates observation of low frequency signals with high frequency noise).

ALL Trigger on video signal sync pulses of all lines
CPT Trigger on video signal sync pulses of a selected line
led off : TV signal with positive video modulation led on : TV signal with negative video modulation
(47) STD - TV Standard 625, 525 or free standard

Select by pressing successively the key.
In free standard mode, the standard is selected by pressing the keys (44) and (45). The standard is valuated from 525 to 1250 (included).
(48) LINE - TV line selection and memorization in TV trigger mode

Adjust the TV line with the keys (44) and (45).
A second press on LINE key (48) memorizes the TV line.

figure 6

4.6 Trigger delay - Timebase B

You can use this mode to examine (at high sweep speed) the details of a portion of a signal after the selected trigger event.

The DELAY control (25) provides continuous adjustment from at least 10 div.
(24-25) DELAY - Select by pressing ALT DLY \rightarrow (24):

- Normal mode (ALT and DLY off):

Sweep starts immediately (trigger event at extreme left of trace).

- Alternate mode (ALT on):

Two traces are obtained for each Y channel: the first one represents the main sweep A with a dimmed area of duration B lagging by the DELAY value. The second trace is offset below the first.

This has a duration corresponding to B and is offset using the TRACE SEP knobs (26) - (27). In ALT or CHOP mode, four traces are obtained:
1: CH1 timebase A
2 : CH1 timebase B
3 : CH2 timebase A 4: CH2 timebase B

Sweep speeds

The timebase A / B button is assigned :
to the timebase A speed in normal mode ($\boldsymbol{\text { ALT }}$ and DLY off) and
to timebase B in ALT or DLY mode.
The timebase B sweep speed cannot be inferior to the A sweep speed.

Note	Before validating ALT or DLY mode, you must imperatively select the A sweep speed with the TIME BASE A/B button.

Delay: To adjust the delay, use the ten-turn DELAY knob.
Alternate mode separation: From -1 to -5 div. Use both TRACE SEP keys located on the same vertical as the DELAY knob. The top key reduces separation and the bottom key increases it.

- Delay mode (DLY on). Only the timebase B sweep speed is displayed.
B.TRIG - Resynchronizes timebase B. Active in ALT or DLY timebase B mode.

B.TRIG LED off

Starting the timebase B sweep needs going through the DELAY time. Mode
«RUN AFTER DELAY ».
B.TRIG LED on

Starting the timebase B sweep needs going through the DELAY time and a TRIGGER event. Mode « TRIG AFTER DELAY».

figure 7

figure 8

4.7 Measurement

(42) MEAS - Measurement selection :

- Amplitude
- Period and frequency
- Phase network shifter

Select by pressing the key successively.
(43) CURS - Active cursor selection.

Select by pressing the key successively. Active cursor shifting with keys (44) and (45).

4.8 Other functions

(33)
(2) TRACE ROTATE - Adjusts parallel alignment of traces horizontally (this is done using a screwdriver).
(41) \quad Z MODULATION - Inputs, via a BNC socket (41) on the rear panel (figure 8), a TTL signal to extinguish the spot (0 V level \rightarrow trace on, 5 V level \rightarrow trace off).

This input also allows the use of a timing reference signal (marker).

figure 9

5. DESCRIPTION OF THE INFORMATION DISPLAYED

5.1 Key selection

MEAS - Cursor measurement selection :

- voltage
- time
- phase

To select, press successively the key. When in XY mode, selection can only be done between the horizontal or the vertical cursor.

PROBE - Probe factor $\times 1, \times 10, \times 100$.
The factor is taken into account to display

- the ranges
- the cursor measurements.

Factor change will be obtained by pressing successively the key. It will also works on the active channels.

In CHOP mode and in ALT mode : to assign simultaneously the same factor on the two channels, press once the PROBE key (46). To set CH1 with the probe factor x 10 and CH2 with the probe factor x 100, you must switch to vertical mode CH1, press once the PROBE key (46), switch to vertical mode CH2, press the key PROBE (46) twice and finally switch to vertical mode CHOP.

STD - TV standard adjustment : 525, 625, free (from 525 to 1250)
Selection by pressing successively the key in free mode, the symbol " X " will appear next to the number of lines of the selected standard. All you have to do is to use the keys (44) and (45) to adjust it.

LINE - TV line selection and memorization in TV trigger mode
The symbol "X" will appear next to the line number. All you have to do is to press the keys (44) and (45) to make the selection.
When the "X" symbol is displayed, a second press on the LINE key (48) memorizes the TV line. The " X " symbol disappears. The TV line is then displayed at each launching of the instrument.

5.2 Voltage measurement

Description of the example shown on the opposite page (figure 10) :
1- Cursor of reference : R
The second cursor is :

- positioned above : the variation is positive,
- positioned below : the variation is negative.

2- Active cursor: X
To select the active cursor use the key (43), to shift it use the keys (44) and (45)

3- Probe factor $\times 10$ is on channel CH1.
4- Channel CH1 range : 5V / div.
If the probe factor is now x 1, the range will switch automatically to 0.5 V .
5- Channel CH2 range : 1V / div.
Probe factor is $\times 1$.
6 - \quad Time base $0.5 \mu \mathrm{~s} / \mathrm{div}$.
The symbol ">" means that the time base is in decalibrated position.
7- Measured variation between the cursors, from CH 1 channel range.
8 - Measured variation between the cursors, from CH 2 channel range.
9- Edge trigger indicator

5.3 Time and frequency measurement

Description of the example shown on the opposite page (figure 11) :
1- Channel CH1 range : $0.5 \mathrm{~V} /$ div.
2 - Channel CH 2 range : $0.1 \mathrm{~V} /$ div., the symbol " $>$ " indicates the channel UNCAL position.

3 - Time base : 0.1 ms .
4- Active cursor "X".
To select the active cursor, use the key (43).
5- Second cursor.
6 - Time variation between the two cursors.
7 - Hertz variation between the two cursors.
The cursor set, to enclose a period, will make measurement of the signal frequency possible.

figure 12

5.4 Phase measurement

Description of the example shown on the opposite page (figure 12) :
1- Channel CH 1 range: $10 \mathrm{~V} / \mathrm{div}$. with probe factor $\times 10$.
2- Channel CH2 range: $10 \mathrm{~V} /$ div. with probe factor $\times 10$.
3 - Time base 0.5 ms .
4 - Cursor of reference 1.
5- Cursor of reference 2.
Cursors of reference 1 and 2 indicate the signal period, i. e. 360°.
6 - Phase measurement cursor.
In this example, the phase measurement cursor is the active cursor, since the symbol " X " is placed under this cursor.

7- Result of the phase measurement.

5.5 TV Mode (coupling CPT)

Description of the example shown on the opposite page (figure 13) :
1- Channel CH1 range : $0.2 \mathrm{~V} / \mathrm{div}$.
2- Time base $20 \mu \mathrm{~s} / \mathrm{div}$.
3 - TV line : trigger line number.
Line 1, in this specific example.
4- TV Standard
In this specific example, the standard is 625 lines.

figure 14 : XY mode

figure 15 : Dual-curve mode

6. APPLICATIONS

6.1 Viewing the calibration signal and adjusting probe compensation

- Connect the PROBE output (33) to the CH1 input (34) using a $1 / 1$ or $1 / 10$ measurement probe.
- Select the following functions:
. CH1 sensitivity (37) :
$0.1 \mathrm{~V} / \mathrm{div}$.
. \quad sweep speed (18) :
$0.2 \mathrm{~ms} / \mathrm{div}$.
. trigger source (19) or (20) :
- trigger mode (17) :

CH1
AUTO

- If necessary, adjust vertical alignment using POSITION control (7) and stabilize the trace using LEVEL control (14).
- Adjust the probe LF compensation, so that the top plateau of the pulse is horizontal.

$50 \mathrm{~ns} /$ div. sweep speed

- Adjust the probe HF compensation, so that the edge and start of the plateau are as rectangular as possible.

Note To compensate, please refer to the operating manual of the probe.

6.2 Measuring phase difference

6.2.1 In XY mode

- Select the XY display mode (6) or (8).
- Adjust vertical sensitivity (32) and (37) to obtain the image shown in figure 14.

Calculating phase difference $\varphi \quad \operatorname{sine} \varphi=\mathrm{AB} / \mathrm{CD}=3.5 \mathrm{div} . / 5 \mathrm{div} .=0.7$, so $\varphi=45^{\circ}$

6.2.2 In dual-curve mode

Use the cursors in φ mode.
(Refer to section 5.4. and figure 15).

6.3 B.W.L.

The launching of this mechanism improves the trace fineness in following cases :

- the full bandwidth is not necessary : B.F. or video signals
- the input junctions are not normally shielded: thickening of the trace (due to the hertzian spectrum collected at the input)
- the neutral point return is too long.

7. SPECIFICATIONS

Only the values assigned tolerances or limits are guaranteed values (after 30 minutes of heating-up). Values without tolerances are given for information only. The measurement errors must be considered in an environment of reference temperature (refer to Section 7.5).

7.1 Vertical deflection

7.2 Horizontal deflection (timebase)

CH1-CH2	Specifications	Comments
Sweep speed	Ranges 50 ns to $100 \mathrm{~ms} / \mathrm{div} . \pm 3$ \%	20 positions 1-2-5 sequences
Variable factor (A only)	Modification of $\mathrm{ms} / \mathrm{div}$. range by 1 to 2.5 (signal horizontally contracted)	Calibrated position : control in left end stop position, led off.
		Uncalibrated position, led on.
x 10 expansion	Accuracy : ± 5 \%	Gives $5 \mathrm{~ns} /$ div.
HOLDOFF	1 to 10, variable	
XY mode	$\mathrm{X}=\mathrm{CH} 1$	
	DC coupling : 0 Hz to 4 MHz AC coupling : 10 Hz to 4 MHz	
	$\mathrm{Y}=\mathrm{CH} 2$	
	DC coupling : 0 Hz to 150 MHz AC coupling: 10 Hz to 150 MHz	
	Phase difference $<1.5^{\circ}$ at 100 kHz	

7.3 Trigger system

	Specifications	Comments
Source:	Sensitivity in normal mode - Trigger from 0 to 180 MHz	
CH1	0.6 div. to 1 kHz	
or	1 div. to 100 MHz	
CH2	2 div. to 150 MHz	
ALT		Source according to display mode:
		CH 1 trigger CH 1
		CH 2 trigger CH 2
		ALT trigger CH 1 then CH 2
		CHOP trigger CH 1
		ADD trigger CH 1
		-CH 2 trigger CH 2
LINE		
EXT	$100 \mathrm{mVrms} \quad 0$ to 50 MHz	protection $\pm 400 \mathrm{~V}$ (DC + AC peak, $\mathrm{f}<1 \mathrm{kHz}$)
	$200 \mathrm{mVrms} \quad 50$ to 150 MHz	
Filters (coupling)	Bandwidth:	
	AC 10 Hz to 150 MHz DC full bandwidth LFR (rejection) 10 kHz to 150 MHz HFR (rejection) DC to 10 kHz	
TV LINE	ALL: synchronize video signal on all lines	Rising edge positive video Falling edge negative video
	CPT: synchronize video signal on a selected line	Rising edge positive video Falling edge negative video
Horizontal mode	AUTO	Relaxed mode
	Normal	Triggered mode
Slope	Negative-going edge Positive-going edge	
Level	Adjustment range:	
	$\mathrm{P}-\mathrm{P}:$ between signal minimum and maximum	
	Normal: ± 12 divisions	

7.4 Miscellaneous

Calibration signal
Shape
Amplitude
Frequency
Z modulation
Input
Sensitivity
Input resistance
Bandwidth
Maximum voltage
squarewave
$-0.5 \mathrm{~V} \pm 1 \%$ CAT I
10 Hz to 50 kHz according to button (18)

BNC socket on rear panel
TTL level
$10 \mathrm{k} \Omega$
20 MHz
$\pm 50 \mathrm{~V}$ dc CAT I

7.5 General features

CRT

Type rectangular with internal graticule, 13 cm diagonal
Graticule eight vertical divisions with five sub-divisions ten horizontal divisions with five sub-divisions 1 division $=1 \mathrm{~cm}$

Screen average persistence phosphor GY
Trace trace rotate adjustment
focus adjustment
intensity adjustment
beam find feature
Total acceleration voltage $\quad 15,5 \mathrm{kV}$.

Power supply

Mains: automatic selection, 94 to 264 Vrms, 45 Hz to 440 Hz , CAT II
Removable mains power cord.
Cord winder with plug support on back of instrument.
Consumption:> 70 W

Safety

According to IEC 1010, class 1 (NFC 42020 ; VDE 0411) degree of pollution 2
Overvoltage category : inputs, CAT I, 150 V max. without probe
CAT II 400 V with the supplied probes
power supply, CAT II, 300 V max.

Environment

Indoor use
Altitude up to 2000 m
Reference temperature
Range of use
Operating temperature
Storage range
Relative humidity

$+18^{\circ} \mathrm{C}$	to $+28^{\circ} \mathrm{C}$
$+10^{\circ} \mathrm{C}$	to $+40^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$	to $+40^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$	to $+70^{\circ} \mathrm{C}$
$<80 \%$	at $+40^{\circ} \mathrm{C}$

EMC

Emission according to EN 50081-1, 1992
Immunity according to EN 50082-1, 1997
Influence parameters :
VERTICAL parasitic deflection $< \pm 2$ div. under the effect of an 80 MHz to 1 GHz RF field or under directed RF interference of 150 MHz to 80 MHz
TRIGGER triggering possible under the effect of rapid burst transients or electrostatic discharges

Mechanical features

Stackable, with handle which also doubles as stand.
Dimensions: see figure below
Weight :

$$
\approx 5.5 \mathrm{~kg}
$$

Packaging

Dimensions: $\quad 550 \times 460 \times 380 \mathrm{~mm}$
Weight: $\quad \approx 7 \mathrm{~kg}$

8. ACCESSORIES AND OPTIONS

8.1 Accessories

Supplied with instrument

- Operating manual
- Spare ceramic fuse T2.5 A / 5×20 / 250 V / located inside the instrument in a recess on the CRT mounting (Manufacturer: FERRAZ, B.P. 25, 69391 LYON Cedex)
- Mains power cord (AG 0439, UK only) (AG 0502, US only)

AT 0090

- $2 \times 1 / 10-10 \mathrm{M} \Omega-250 \mathrm{MHz}$ stepdown passive probes

AG 0416
HX 0004

Supplied to order

- Male BNC/male plug lead 50Ω

PA 2249C48

- Male BNC/male banana plug lead

HA 0844

- $1 / 100-100 \mathrm{M} \Omega-200 \mathrm{MHz}$ stepdown passive probe

HA 1317

- 15 MHz differential probe

MX 9000

- 50Ω BNC Charge

PA 4119-50

- BNC T male/female

PA 3285

- 19" rack mounting set

RK 0008

- Remote programming kit HA 1267

figure 16

Complete cale : $\mathbf{2 5}$ pins

(RTS protocol)

25-pin female connector
25 -pin female connector
figure 17
Complete cale : 25/9 pins
(RTS protocol)
Oscilloscope end
PC end

25-pin female connector

9. PROGRAMMING

9.1 General description

This RS232 (49) standard serial link sets the communication between the oscilloscope and a PC or compatible computer, including :

- remote programming of the oscilloscope,
- reading the configuration of the oscilloscope.

9.2 Serial link characteristics

Oscilloscope connector : 25-pin cannon plug
cable :
Protocol :
Data rate :
Data format :
Protection:
five wires (two transmission wires, one ground wire, two control wires)
RTS
9600 bauds
8 bits - no parity - 1 bit stop
per EIA RS232C standard

9.3 PC / oscilloscope link wiring

The serial link cable from the oscilloscope to the PC or compatible microcomputer is a complete cable (figure 17) :

- a TXD wire for transmitted data,
- an RXD wire for received data,
- an SG wire for signal ground.

The serial connector at the oscilloscope end is a 25 -pin cannon plug.
The pin-out of the connecting cable depends on the connector at the PC end. There are two possible types :

- 25-pin cannon plug (the most widely used),
-9-pin plug (mainly on portables).
The link cable comprises two female connectors (25- or 9-pin). The wiring will depend on the connector on your computer (figure 18) :

Note An RS232 cable measuring less than 15 metres is recommended.

9.4 Command syntaxis

9.4.1 Oscilloscope configuration

All the oscilloscope functions(apart from potentiometer settings and the ON/OFF switch) can be programmed remotely from a PC or compatible computer. There are 15 programmable commands available.

Each command is divided into three characters:
<function> active function number,
<parameter> function parameter (depending on the current status of the oscilloscope),
<terminator> end of text character EOT.
Tables giving the syntax of all oscilloscope commands are in section 10.1 and following (codes expressed in decimal).

A «Decimal-Hexadecimal-ASCII» mapping table is given at the end of the manual. This table shows the 7 bit coded characters. The 8 bit coding is not standardized, and is therefore not given in this table.

E Example

Configuration of the vertical ADD mode in Decimal, Hexadecimal and ASCII.

Used code		<Function>	<Parameter>	<Terminator>
in decimal	100	52	04	
in hexadecimal	64	34	04	
in ASCII	"d"	"4"	EOT	

This configuration can be programmed (in hexadecimal) under QBASIC, as follows :
comm $\$=\mathrm{CHR} \$(\& \mathrm{H} 64)+\mathrm{CHR} \$(\& \mathrm{H} 34)+\mathrm{CHR} \$(\& \mathrm{H} 04)$
PRINT \#1, comm\$; functions are inhibited (following table). The leds are off and the keys corresponding to the functions are inoperative (the programming is not possible).

- Trigger source on "LINE"

When the trigger source "LINE" is configurated (handly or remotely), the function "Trigger filter" is inhibited. The led is off and the keys 21 and 22 are inoperative.

Functions	Key	XY mode	Synchro line
Time base	18	Inhibited	
x 10 Expansion	12	Inhibited	
Trigger source	$19 / 20$	Inhibited	
Automatic trigger	17	Inhibited	
Trigger coupling	$21 / 22$	Inhibited	Inhibited
Peak to Peak mode	13	Inhibited	
Trigger edge	15	Inhibited	
Trigger delay	24	Inhibited	
B-TRIG	28	Inhibited	
TRACE-SEP	$26 / 27$	Inhibited	

9.5 Reading the decalibration potentiometers status

After a command "Calibration Status", the oscilloscope sends a serial of 3 messages corresponding to the status of CH 1 decalibrations (36), of CH 2 (31) and of timebase A (16).

To get the decalibration status, send the command :

$$
<0 \times 78><0 \times 30><0 \times 04>
$$

The answer is :

Function	<Function>	<Parameter>	<Terminator>
Decalibration CH1	$<0 \times 51>$	<STATUS>	$<0 \times 04>$
Decalibration CH2	$<0 \times 52>$	<STATUS>	$<0 \times 04>$
Decalibration BDT A	<0x53>	<STATUS>	$<0 \times 04>$
with STATUS $=$		0×30	Potentiometer in calibrated position
		0×31	Potentiometer in decalibrated position

9.6 Reading the oscilloscope configuration

You can query the internal configuration of the oscilloscope at any time from the computer, by sending the «Configuration request» commands.

Response to configuration request (<0x76> <0x30> <0x04>)

Functions	<Function>	$<$ Parameter>	<Terminator>
Writing code of a configuration	119	48	04
Vertical sensitivity CH1	96	(acc. to oscilloscope status)	04
Input coupling CH1	106	(acc. to oscilloscope status)	04
Vertical sensitivity CH2	97	(acc. to oscilloscope status)	04
Input coupling CH2	108	(acc. to oscilloscope status)	04
CH2 invert	110	(acc. to oscilloscope status)	04
Bandwidth limit	111	(acc. to oscilloscope status)	04
Time base A	98	(acc. to oscilloscope status)	04
Time base B	99	(acc. to oscilloscope status)	04
Base resynchronisation B	102	(acc. to oscilloscope status)	04
x10 expansion	113	(acc. to oscilloscope status)	04
Automatic trigger	115	(acc. to oscilloscope status)	04
Trace separate	103	(acc. to oscilloscope status)	04
Trigger filter	105	(acc. to oscilloscope status)	04
Trigger source	104	(acc. to oscilloscope status)	04
Peak to Peak mode	112	(acc. to oscilloscope status)	04
Trigger edge	114	(acc. to oscilloscope status)	04
Trigger delay	101	(acc. to oscilloscope status)	04
Vertical mode	100	(acc. to oscilloscope status)	04

Response to display configuration request (<0x9E> <0x30> <0x04>)

Functions	<Function>	<Parameter>	$<$ Terminator>
Remote mode	159	(acc. to oscilloscope status)	04
Read-out status	160	(acc. to oscilloscope status)	04
Probe CH1	161	(acc. to oscilloscope status)	04
Probe CH2	162	(acc. to oscilloscope status)	04
Measure	163	(acc. to oscilloscope status)	04
Cursor 1 position	165	(acc. to oscilloscope status)	04
Cursor 2 position	166	(acc. to oscilloscope status)	04
Cursor 3 position	167	(acc. to oscilloscope status)	04
TV standard unity	168	(acc. to oscilloscope status)	04
TV standard hundred	169	(acc. to oscilloscope status)	04
TV line unity	170	(acc. to oscilloscope status)	04
TV line hundred	171	(acc. to oscilloscope status)	04

When the oscilloscope identifies the "Configuration request" command, it returns 19 messages to the computer, showing the configuration of the oscilloscope.

In case of "Display configuration request", it returns 12 messages to the computer.

Message structure

Each message comprises three characters, using the format described previously for commands:
<function> active function number,
<parameter> function parameter (depending on the current status of the oscilloscope),
<terminator> end of text character EOT.
The parameter values depend on the current status of the oscilloscope. The parameter value also depends on the function (the values are given in the table of configuration commands).

®
 Note Configuration read messages have the same format as programming commands.

Configuration read messages can be filed (for configuration backup purposes) so that the oscilloscope can subsequently be reconfigurated (restoring the configuration).

9.7 Remote programming software

A front panel driving software and its Labwindows drivers are available optionally under reference HA 1267.

10.SUMMARY TABLES

10.1 Configuration commands

VERTICAL MODE

Function	Selection	<function>	<parameter>	<terminator>
Display mode (vertical), keys 6-8				
	CH1	100	48	04
	CH2	100	49	04
	ALT	100	50	04
	CHOP	100	51	04
	ADD	100	52	04
	XY	100	53	04
CH1 Vertical sensitivity, switch 37				
	5 V	96	48	04
	2 V	96	49	04
	1 V	96	50	04
	0.5 V	96	51	04
	0.2 V	96	52	04
	0.1 V	96	53	04
	50 mV	96	54	04
	20 mV	96	55	04
	10 mV	96	56	04
	5 mV	96	57	04
	2 mV	96	58	04
CH2 Vertical sensitivity, switch 32				
	5 V	97	48	04
	2 V	97	49	04
	1 V	97	50	04
	0.5 V	97	51	04
	0.2 V	97	52	04
	0.1 V	97	53	04
	50 mV	97	54	04
	20 mV	97	55	04
	10 mV	97	56	04
	5 mV	97	57	04
	2 mV	97	58	04
CH1 input coupling, key 35	AC	106	48	04
	DC	106	49	04
	GND	106	50	04
CH2 input coupling, key 30	AC	108	48	04
	DC	108	49	04
	GND	108	50	04
CH2 invert, key 10	CH2 normal	110	48	04
	CH 2 inverted	110	49	04
CH1 probe factor	$\times 1$	161	48	04
	$\times 10$	161	49	04
	x 100	161	50	04
CH2 probe factor	$\times 1$	162	48	04
	$\times 10$	162	49	04
	$\times 100$	162	50	04

TIME BASE

Function Selection	<function>		<parameter>	<terminator>
Sweep speed (s/div.), switch 18	TB A	TB B		
$100 \mathrm{~ms} / \mathrm{div}$.	98	99	48	04
$50 \mathrm{~ms} / \mathrm{div}$.	98	99	49	04
$20 \mathrm{~ms} / \mathrm{div}$.	98	99	50	04
$10 \mathrm{~ms} / \mathrm{div}$.	98	99	51	04
$5 \mathrm{~ms} / \mathrm{div}$.	98	99	52	04
$2 \mathrm{~ms} / \mathrm{div}$.	98	99	53	04
$1 \mathrm{~ms} / \mathrm{div}$.	98	99	54	04
$0.5 \mathrm{~ms} / \mathrm{div}$.	98	99	55	04
$0.2 \mathrm{~ms} / \mathrm{div}$.	98	99	56	04
$0.1 \mathrm{~ms} / \mathrm{div}$.	98	99	57	04
$50 \mu \mathrm{~s} / \mathrm{div}$.	98	99	58	04
$20 \mu \mathrm{~s} / \mathrm{div}$.	98	99	59	04
$10 \mu \mathrm{~s} / \mathrm{div}$.	98	99	60	04
$5 \mu \mathrm{~s} / \mathrm{div}$.	98	99	61	04
$2 \mu \mathrm{~s} / \mathrm{div}$.	98	99	62	04
$1 \mu \mathrm{~s} / \mathrm{div}$.	98	99	63	04
$0.5 \mu \mathrm{~s} / \mathrm{div}$.	98	99	64	04
$0.2 \mu \mathrm{~s} / \mathrm{div}$.	98	99	65	04
$0.1 \mu \mathrm{~s} / \mathrm{div}$.	98	99	66	04
$50 \mathrm{~ns} / \mathrm{div}$.	98	99	67	04
x 10 expansion, key 12				
$\times 1$	113		48	04
$\times 10$	113		49	04

TRIGGERING

Function Selection	<function>	<parameter>	<terminator>
Trigger source, keys 19-20			
CH 1	104	48	04
CH2	104	49	04
ALT	104	50	04
LINE	104	51	04
EXT	104	52	04
Automatic trigger, key 17			
normal	115	48	04
automatic	115	49	04
Trigger coupling, keys 21-22			
DC	105	48	04
AC	105	49	04
LFR	105	50	04
HFR	105	51	04
ALL	105	52	04
CPT	105	53	04
Peak to Peak (P-P) mode, key 13			
normal	112	48	04
Peak to Peak	112	49	04
Trigger edge, key 15			
rising	114	48	04
falling	114	49	04
TV standard (*)			
xx00 to xx99	168	48 to 147	04
5 xx to 12xx	169	53 to 60	04
TV line (**)			
$0 x x$ to xx99	170	48 to 147	04
0xx to 12xx	171	48 to 60	04

@ Caution (*) TV standard selection
When switching from a line to another (unit, hundred), do not try to enter a transient value, i. e. less than 525 or more than 1250.
(**) TV line number selection
When switching from a line to another (unit, hundred), do not try to enter a transient value, more than the TV standard.

Function Selection	<function>	<parameter>	<terminator>
Trigger delay, key 24			
normal	101	48	04
ALT	101	49	04
DLY	101	50	04
Time base B resynchronisation, key 28			
Run after delay	102	48	04
Trig after delay	102	49	04
Trace separate, key 26 \& 27			
value	103	$48 \leq$ par. ≤ 63	04

AUTOSET

Function	Selection	<function>	<parameter>	<terminator>
Autoset pressed briefly, key 3	117	48	04	
Bandwidth limit, keys 6 \& 8				
	normal	111	48	04
	Bandwidth limit	111	49	04

Function	Selection	<function>	<parameter>	<terminator>
Display activation	OFF	160	48	04
	ON	160	49	04
Measurement	OFF	163	48	04
	voltage	163	49	04
	time	163	50	04
	phase	163	51	04
Selection				
tracking cursor		164	48	04
cursor 1		164	49	04
cursor 2		164	50	04
cursor 3		164	51	04
Position				
cursor 1 vertical		165	5 to 255	04
horizontal		165	48 to 248	04
cursor 2 vertical		166	5 to 255	04
horizontal		166	48 to 248	04
cursor 3		167	5 to 255	04

MISCELLANEOUS

Function	<function>	<parameter>	<terminator>
Front panel unlocking	116	48	04
Front panel locking	116	49	04

10.2 Configuration request

CONFIGURATION REQUEST

Function	<function>	<parameter>	<terminator>
Configuration request	118	48	04
Reading decalibrations	120	48	04
Display configuration request	158	48	04

10.3 ASCII Table

ASCII CODE

Hexadecimal i
Decimal

